Стабилизация программных движений при полной и неполной обратной связи

В данном учебном пособии приводятся основные понятия и определения теории устойчивости систем обыкновенных дифференциальных уравнений, а также рассмотрены вопросы стабилизации линейных стационарных систем в пространстве состояний в случае полной и неполной обратной связи. Предложен общий алг...

Full description

Bibliographic Details
Main Author: Смирнов Н. В.
Other Authors: Смирнова Т. Е., Тамасян Г. Ш.
Format: Book
Language:Russian
Published: Санкт-Петербург Лань 2022
Edition:3-е изд., стер.
Online Access:https://e.lanbook.com/book/209735
https://e.lanbook.com/img/cover/book/209735.jpg
Description
Summary:В данном учебном пособии приводятся основные понятия и определения теории устойчивости систем обыкновенных дифференциальных уравнений, а также рассмотрены вопросы стабилизации линейных стационарных систем в пространстве состояний в случае полной и неполной обратной связи. Предложен общий алгоритм решения задачи стабилизации. Рассмотрены методы построения асимптотических идентификаторов разных типов, применяемых для оценки фазового состояния управляемой системы в режиме стабилизации в случае неполной обратной связи. Конкретные реализации алгоритмов построения стабилизирующих управлений для различных частных случаев проиллюстрированы большим количеством примеров. Книга разработана в рамках курсов «Теория управления», «Устойчивость движения» факультета прикладной математики - процессов управления СПбГУ и предназначена для студентов вузов, обучающихся по направлениям «Прикладные математика и физика», «Прикладная математика и информатика», а также другим математическим и естественнонаучным направлениям и специальностям в области техники и технологий. Она также может быть полезна научным работникам, специализирующимся в области математического моделирования, теории управления и теории устойчивости.
Item Description:Рекомендовано УМО вузов РФ по образованию в области прикладных математики и физики в качестве учебного пособия для студентов вузов, обучающихся по направлению «Прикладные математика и физика», а также по другим математическим и естественнонаучным направлениям и специальностям и смежным направлениям и специальностям в области техники и технологий
Physical Description:128 с.
Audience:Книга из коллекции Лань - Математика
Bibliography:Библиогр.: доступна в карточке книги, на сайте ЭБС Лань
ISBN:978-5-8114-2023-0