Electrospun magnetic composite poly-3-hydroxybutyrate/magnetite scaffolds for biomedical applications: composition, structure, magnetic properties, and biological performance

Magnetically responsive composite polymer scaffolds have good potential for a variety of biomedical applications. In this work, electrospun composite scaffolds made of polyhydroxybutyrate (PHB) and magnetite (Fe3O4) particles (MPs) were studied before and after degradation in either PBS or a lipase...

Full description

Bibliographic Details
Published in:ACS applied bio materials Vol. 5, № 8. P. 3999-4019
Other Authors: Pryadko, Artyom S., Mukhortova, Yulia R., Chernozem, Roman V., Pariy, Igor O., Alipkina, Svetlana I., Zharkova, Irina I., Dudun, Andrey A., Zhuikov, Vsevolod A., Moisenovich, Anastasia M., Bonartseva, Garina A., Voinova, Vera V., Chesnokova, Dariana V., Ivanov, Alexey A., Travnikova, Daria Yu, Shaitan, Konstantin V., Bonartsev, Anton P., Wagner, Dmitriy V., Shlapakova, Lada E., Surmenev, Roman A., Surmeneva, Maria A.
Format: Article
Language:English
Subjects:
Online Access:http://vital.lib.tsu.ru/vital/access/manager/Repository/koha:001000087
Перейти в каталог НБ ТГУ
LEADER 04406nab a2200565 c 4500
001 koha001000087
005 20230417124543.0
007 cr |
008 230411|2022 xxu s a eng d
024 7 |a 10.1021/acsabm.2c00496  |2 doi 
035 |a koha001000087 
040 |a RU-ToGU  |b rus  |c RU-ToGU 
245 1 0 |a Electrospun magnetic composite poly-3-hydroxybutyrate/magnetite scaffolds for biomedical applications: composition, structure, magnetic properties, and biological performance  |c A. S. Pryadko, Y. R. Mukhortova, R. V. Chernozem [et al.] 
336 |a Текст 
337 |a электронный 
520 3 |a Magnetically responsive composite polymer scaffolds have good potential for a variety of biomedical applications. In this work, electrospun composite scaffolds made of polyhydroxybutyrate (PHB) and magnetite (Fe3O4) particles (MPs) were studied before and after degradation in either PBS or a lipase solution. MPs of different sizes with high saturation magnetization were synthesized by the coprecipitation method followed by coating with citric acid (CA). Nanosized MPs were prone to magnetite-maghemite phase transformation during scaffold fabrication, as revealed by Raman spectroscopy; however, for CA-functionalized nanoparticles, the main phase was found to be magnetite, with some traces of maghemite. Submicron MPs were resistant to the magnetite-maghemite phase transformation. MPs did not significantly affect the morphology and diameter of PHB fibers. The scaffolds containing CA-coated MPs lost 0.3 or 0.2% of mass in the lipase solution and PBS, respectively, whereas scaffolds doped with unmodified MPs showed no mass changes after 1 month of incubation in either medium. In all electrospun scaffolds, no alterations of the fiber morphology were observed. Possible mechanisms of the crystalline-lamellar-structure changes in hybrid PHB/Fe3O4 scaffolds during hydrolytic and enzymatic degradation are proposed. It was revealed that particle size and particle surface functionalization affect the mechanical properties of the hybrid scaffolds. The addition of unmodified MPs increased scaffolds' ultimate strength but reduced elongation at break after the biodegradation, whereas simultaneous increases in both parameters were observed for composite scaffolds doped with CA-coated MPs. The highest saturation magnetization-higher than that published in the literature-was registered for composite PHB scaffolds doped with submicron MPs. All PHB scaffolds proved to be biocompatible, and the ones doped with nanosized MPs yielded faster proliferation of rat mesenchymal stem cells. In addition, all electrospun scaffolds were able to support angiogenesis in vivo at 30 days after implantation in Wistar rats. 
653 |a композитные каркасы 
653 |a поли-3-гидроксибутират 
653 |a электропрядение 
653 |a намагничивание 
653 |a магнитные свойства 
653 |a биологические характеристики 
655 4 |a статьи в журналах  |9 882889 
700 1 |a Pryadko, Artyom S.  |9 855559 
700 1 |a Mukhortova, Yulia R.  |9 855542 
700 1 |a Chernozem, Roman V.  |9 855560 
700 1 |a Pariy, Igor O.  |9 855561 
700 1 |a Alipkina, Svetlana I.  |9 882898 
700 1 |a Zharkova, Irina I.  |9 855564 
700 1 |a Dudun, Andrey A.  |9 882899 
700 1 |a Zhuikov, Vsevolod A.  |9 882900 
700 1 |a Moisenovich, Anastasia M.  |9 882901 
700 1 |a Bonartseva, Garina A.  |9 882890 
700 1 |a Voinova, Vera V.  |9 882891 
700 1 |a Chesnokova, Dariana V.  |9 882892 
700 1 |a Ivanov, Alexey A.  |9 882893 
700 1 |a Travnikova, Daria Yu.  |9 882894 
700 1 |a Shaitan, Konstantin V.  |9 882895 
700 1 |a Bonartsev, Anton P.  |9 855566 
700 1 |a Wagner, Dmitriy V.  |9 855544 
700 1 |a Shlapakova, Lada E.  |9 882897 
700 1 |a Surmenev, Roman A.  |9 855541 
700 1 |a Surmeneva, Maria A.  |9 855540 
773 0 |t ACS applied bio materials  |d 2022  |g Vol. 5, № 8. P. 3999-4019  |x 2576-6422 
852 4 |a RU-ToGU 
856 4 |u http://vital.lib.tsu.ru/vital/access/manager/Repository/koha:001000087 
856 |y Перейти в каталог НБ ТГУ  |u https://koha.lib.tsu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=1000087 
908 |a статья 
999 |c 1000087  |d 1000087 
039 |b 100