Asymptotic analysis of resource heterogeneous QS (MMPP + 2M)(2,ν)/GI(2)/∞ under equivalently increasing service time

We consider a resource heterogeneous queuing system with a flexible two-node request-response facility. Each node has a certain resource capacity for service (buffer space) and hence a potential to respond to an incoming demand that generates a request for the provision of some random amount of reso...

Full description

Bibliographic Details
Published in:Automation and remote control Vol. 83, № 8. P. 1213-1227
Other Authors: Moiseeva, Svetlana P., Bushkova, Tatyana V., Pankratova, Ekaterina V., Farkhadov, Mais Pashaevich, Imomov, A. A.
Format: Article
Language:English
Subjects:
Online Access:http://vital.lib.tsu.ru/vital/access/manager/Repository/koha:001000148
LEADER 02615nab a2200361 c 4500
001 koha001000148
005 20250123155626.0
007 cr |
008 230412|2022 xxu s a eng d
024 7 |a 10.1134/S0005117922080057  |2 doi 
035 |a koha001000148 
040 |a RU-ToGU  |b rus  |c RU-ToGU 
245 1 0 |a Asymptotic analysis of resource heterogeneous QS (MMPP + 2M)(2,ν)/GI(2)/∞ under equivalently increasing service time  |c S. P. Moiseeva, T. V. Bushkova, E. V. Pankratova [et al.] 
336 |a Текст 
337 |a электронный 
504 |a Библиогр.: 39 назв. 
520 3 |a We consider a resource heterogeneous queuing system with a flexible two-node request-response facility. Each node has a certain resource capacity for service (buffer space) and hence a potential to respond to an incoming demand that generates a request for the provision of some random amount of resources for some random time. The request flows are steady-state Poisson flows of varying intensity. If it is required to use the resources of both nodes to serve a request, then it is assumed that the moments of arrival of such requests form an MMPP flow with a division into two different types of requests. A distinctive feature of the systems under consideration is that the resource is released in the same amount as requested. To construct a multidimensional Markov process, we use the method of introducing an additional variable and dynamic probabilities. The problem of analyzing the total amount of resources occupied by each type is solved provided that the request servicing intensity is much lower than the incoming flow intensity and assuming that the servers have unlimited resources. 
653 |a ресурсные системы массового обслуживания 
653 |a параллельная организация массового обслуживания 
653 |a марковский модулированный пуассоновский поток 
653 |a асимптотический анализ 
653 |a гетерогенные серверы 
655 4 |a статьи в журналах 
700 1 |a Moiseeva, Svetlana P. 
700 1 |a Bushkova, Tatyana V. 
700 1 |a Pankratova, Ekaterina V. 
700 1 |a Farkhadov, Mais Pashaevich 
700 1 |a Imomov, A. A. 
773 0 |t Automation and remote control  |d 2022  |g Vol. 83, № 8. P. 1213-1227  |x 0005-1179 
852 4 |a RU-ToGU 
856 4 |u http://vital.lib.tsu.ru/vital/access/manager/Repository/koha:001000148 
908 |a статья 
999 |c 1000148  |d 1000148