Asymptotically optimal robust information-based quick detection for general stochastic models with nonparametric postchange uncertainty

By making use of Kullback-Leibler information, we develop a new approach for the quickest detection problem for general statistical models with dependent observations and unknown postchange distributions; the postchange distribution depends on either unknown informative parameters or unknown nonpara...

Full description

Bibliographic Details
Published in:Sequential Analysis Vol. 41, № 1. P. 119-141
Main Author: Girardin, Valérie
Other Authors: Konev, Victor V., Pergamenshchikov, Serguei M.
Format: Article
Language:English
Subjects:
Online Access:http://vital.lib.tsu.ru/vital/access/manager/Repository/koha:001003546
Перейти в каталог НБ ТГУ
LEADER 02480nab a2200337 c 4500
001 koha001003546
005 20230620152840.0
007 cr |
008 230616|2022 xxu s a eng d
024 7 |a 10.1080/07474946.2022.2043052  |2 doi 
035 |a koha001003546 
040 |a RU-ToGU  |b rus  |c RU-ToGU 
100 1 |a Girardin, Valérie  |9 888919 
245 1 0 |a Asymptotically optimal robust information-based quick detection for general stochastic models with nonparametric postchange uncertainty  |c V. Girardin, V. V. Konev, S. M. Pergamenshchikov 
336 |a Текст 
337 |a электронный 
504 |a Библиогр.: 25 назв. 
520 3 |a By making use of Kullback-Leibler information, we develop a new approach for the quickest detection problem for general statistical models with dependent observations and unknown postchange distributions; the postchange distribution depends on either unknown informative parameters or unknown nonparametric infinite-dimensional nuisance functions. For such models, we introduce a robust risk as the supremum of the mean detection delay over the class of postchange distributions. On the basis of the window-limited cumulative sum rules developed by Lai in 1988, we propose new detection procedures, making use of the noise density that minimizes the Kullback-Leibler divergence. Then for the constructed detection procedures, we provide sufficient conditions on the considered statistical models that ensure minimax optimality properties with respect to the robust risk. We apply the developed methods to the quick detection problems for both scalar and multivariate autoregressive processes with unknown postchange parameters and unknown noise distributions. 
653 |a авторегрессионные процессы 
653 |a обнаружение точки изменения 
653 |a Кульбака-Лейблера дивергенция 
655 4 |a статьи в журналах  |9 888920 
700 1 |a Konev, Victor V.  |9 97657 
700 1 |a Pergamenshchikov, Serguei M.  |9 98934 
773 0 |t Sequential Analysis  |d 2022  |g Vol. 41, № 1. P. 119-141  |x 0747-4946 
852 4 |a RU-ToGU 
856 4 |u http://vital.lib.tsu.ru/vital/access/manager/Repository/koha:001003546 
856 |y Перейти в каталог НБ ТГУ  |u https://koha.lib.tsu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=1003546 
908 |a статья 
039 |b 100 
999 |c 1003546  |d 1003546