Reconstructing the ozone concentration profile using machine learning methods

The main greenhouse gases are ozone and the gas components of ozone cycles. Operational determination of ozone concentration profiles is carried out by lidar methods, which limits the number of measurements obtained. Machine learning methods can be used to build predictive models of the data as well...

Full description

Bibliographic Details
Published in:Proceedings of SPIE Vol. 12341 : 28th International Symposium on Atmospheric and Ocean Optics: Atmospheric Physics, 2022, Tomsk, Russia. P. 123413L-1-123413L-5
Main Author: Vrazhnov, Denis A.
Format: Article
Language:English
Subjects:
Online Access:http://vital.lib.tsu.ru/vital/access/manager/Repository/koha:001009330
Перейти в каталог НБ ТГУ
LEADER 01986nab a2200337 c 4500
001 koha001009330
005 20231113162233.0
007 cr |
008 231108|2022 xxu s a eng d
024 7 |a 10.1117/12.2644962  |2 doi 
035 |a koha001009330 
040 |a RU-ToGU  |b rus  |c RU-ToGU 
100 1 |a Vrazhnov, Denis A.  |9 106039 
245 1 0 |a Reconstructing the ozone concentration profile using machine learning methods  |c D. A. Vrazhnov 
336 |a Текст 
337 |a электронный 
504 |a Библиогр.: 14 назв. 
520 3 |a The main greenhouse gases are ozone and the gas components of ozone cycles. Operational determination of ozone concentration profiles is carried out by lidar methods, which limits the number of measurements obtained. Machine learning methods can be used to build predictive models of the data as well as to approximate them. This paper investigates the possibility of generating data to build robust predictive models of ozone concentration profiles based on generative adversarial neural networks (GAN). Several GAN architectures were proposed and the benefits of each one is discussed. 
653 |a машинное обучение 
653 |a генеративно-состязательные сети 
653 |a увеличение данных 
653 |a лидары 
653 |a профиль концентрации озона 
655 4 |a статьи в журналах  |9 898720 
773 0 |t Proceedings of SPIE  |d 2022  |g Vol. 12341 : 28th International Symposium on Atmospheric and Ocean Optics: Atmospheric Physics, 2022, Tomsk, Russia. P. 123413L-1-123413L-5  |x 0277-786X 
852 4 |a RU-ToGU 
856 4 |u http://vital.lib.tsu.ru/vital/access/manager/Repository/koha:001009330 
856 |y Перейти в каталог НБ ТГУ  |u https://koha.lib.tsu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=1009330 
908 |a статья 
999 |c 1009330  |d 1009330 
039 |b 100