Data science in chemistry artificial intelligence, big data, chemometrics and quantum computing with Jupyter

The ever-growing wealth of information has led to the emergence of a fourth paradigm of science. This new field of activity - data science - includes computer science, mathematics and a given specialist domain. This book focuses on chemistry, explaining how to use data science for deep insights and...

Full description

Bibliographic Details
Main Author: Gressling, Thorsten (Author, http://id.loc.gov/vocabulary/relators/aut)
Format: eBook
Language:English
Published: Berlin ; Boston De Gruyter, [2021]
Series:De Gruyter graduate.
Subjects:
Online Access:https://www.lib.tsu.ru/mminfo/2023/EBSCO/2668415.pdf
LEADER 06592cam a2200493 i 4500
001 koha001010747
003 OCoLC
005 20231122155817.0
006 m d
007 cr |||||||||||
008 201212s2021 gw a fob 001 0 eng d
010 |a  2020942815 
035 |a koha001010747 
040 |a DEGRU  |b eng  |e rda  |e pn  |c DEGRU  |d WAU  |d OCLCO  |d YDX  |d SFB  |d N$T 
019 |a 1245461438 
020 |a 9783110629453 
020 |a 3110629453 
020 |z 9783110629392 
020 |z 3110629399 
024 7 |a 10.1515/9783110629453  |2 doi 
050 4 |a QD39.3.E46  |b G74 2021 
082 0 4 |a 542/.85  |2 23 
084 |a VC 6081  |2 rvk  |0 (DE-625)rvk/147082:254 
049 |a MAIN 
100 1 |a Gressling, Thorsten,  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Data science in chemistry  |b artificial intelligence, big data, chemometrics and quantum computing with Jupyter  |c Thorsten Gressling. 
264 1 |a Berlin ;  |a Boston  |b De Gruyter,  |c [2021] 
264 4 |c ©2021 
300 |a 1 online resource (xviii, 522 pages)  |b color illustrations 
347 |a text file  |2 rdaft 
347 |b PDF 
490 1 |a De Gruyter graduate 
520 |a The ever-growing wealth of information has led to the emergence of a fourth paradigm of science. This new field of activity - data science - includes computer science, mathematics and a given specialist domain. This book focuses on chemistry, explaining how to use data science for deep insights and take chemical research and engineering to the next level. It covers modern aspects like Big Data, Artificial Intelligence and Quantum computing. 
505 0 0 |t Introduction --  |t Technical setup and naming conventions --  |t 1. Data science: introduction --  |t 2. Data science: the "fourth paradigm" of science --  |t 3. Relations to other domains and cheminformatics --  |t Part A: IT, data science, and AI --  |t IT basics (cloud, REST, edge) --  |t 4. Cheminformatics application landscape --  |t 5. Cloud, fog, and AI runtime environments --  |t 6. DevOps, DataOps, and MLOps --  |t 7. High-performance computing (HPC) and cluster --  |t 8. REST and MQTT --  |t 9. Edge devices and IoT --  |t Programming --  |t 10. Python and other programming languages --  |t 11. Python standard libraries and Conda --  |t 12. IDE's and workflows --  |t 13. Jupyter notebooks --  |t 14. Working with notebooks and extensions --  |t 15. Notebooks and Python --  |t 16. Versioning code and Jupyter notebooks --  |t 17. Integration of Knime and Excel --  |t Data engineering --  |t 18. Big data --  |t 19. Jupyter and Spark --  |t 20. Files: structure representations --  |t 21. Files: other formats --  |t 22. Data retrieval and processing: ETL --  |t 23. Data pipelines --  |t 24. Data ingestion: online data sources --  |t 25. Designing databases --  |t 26. Data science workflow and chemical descriptors --  |t Data science as field of activity --  |t 27. Community and competitions --  |t 28. Data science libraries --  |t 29. Deep learning libraries --  |t 30. ML model sources and marketplaces --  |t 31. Model metrics: MLFlow and Ludwig --  |t Introduction to ML and AI --  |t 32. First generation (logic and symbols) --  |t 33. Second generation (shallow models) --  |t 34. Second generation: regression --  |t 35. Decision trees --  |t 36. Second generation: classification --  |t 37 Second generation: clustering and dimensionality reduction --  |t 38. Third generation: deep learning models (ANN) --  |t 39 Third generation: SNN - spiking neural networks --  |t 40. xAI: eXplainable AI --  |t Part B: Jupyter in cheminformatics --  |t Physical chemistry --  |t 41. Crystallographic data --  |t 42. Crystallographic calculations --  |t 43. Chemical kinetics and thermochemistry --  |t 44. Reaction paths and mixtures --  |t 45. The periodic table of elements --  |t 46. Applied thermodynamics --  |t Material science --  |t 47. Material informatics --  |t 48. Molecular dynamics workflows --  |t 49. Molecular mechanics --  |t 50. VASP --  |t 51. Gaussian (ASE) --  |t 52. GROMACS --  |t 53. AMBER, NAMD, and LAMMPS --  |t 54. Featurize materials --  |t 55. ASE and NWChem --  |t Organic chemistry --  |t 56. Visualization --  |t 57. Molecules handling and normalization --  |t 58. Features and 2D descriptors (of carbon compounds) --  |t 59. Working with molecules and reactions --  |t 60. Fingerprint descriptors (1D) --  |t 61. Similarities --  |t Engineering, laboratory, and production --  |t 62. Laboratory: SILA and AnIML --  |t 63. Laboratory: LIMS and daily calculations --  |t 64. Laboratory: robotics and cognitive assistance --  |t 65. Chemical engineering --  |t 66. Reactors, process flow, and systems analysis --  |t 67 Production: PLC and OPC/UA --  |t 68. Production: predictive maintenance --  |t Part C: Data science --  |t Data engineering in analytic chemistry --  |t 69. Titration and calorimetry --  |t 70. NMR --  |t 71. X-ray-based characterization: XAS, XRD, and EDX --  |t 72. Mass spectroscopy --  |t 73. TGA, DTG --  |t 74. IR and Raman spectroscopy --  |t 75. AFM and thermogram analysis --  |t 76. Gas chromatography-mass spectrometry (GC-MS) --  |t Applied data science and chemometrics --  |t 77. SVD chemometrics example --  |t 78. Principal component analysis (PCA) --  |t 79. QSAR: quantitative structure-activity relationship --  |t 80. DeepChem: binding affinity --  |t 81. Stoichiometry and reaction balancing --  |t Applied artificial intelligence --  |t 82. ML Python libraries in chemistry --  |t 83. AI in drug design --  |t 84. Automated machine learning --  |t 85. Retrosynthesis and reaction prediction --  |t 86. ChemML --  |t 87. AI in material design --  |t Knowledge and information --  |t 88. Ontologies and inferencing --  |t 89. Analyzing networks --  |t 90. Knowledge ingestion: labeling and optical recognition --  |t 91. Content mining and knowledge graphs --  |t Part D: Quantum computing and chemistry Introduction --  |t 92. Quantum concepts --  |t 93. QComp: technology vendors --  |t 94. Quantum computing simulators --  |t 95. Quantum algorithms --  |t 96. Quantum chemistry software (QChem) --  |t Quantum Computing Applications --  |t 97. Application examples --  |t 98. Simulating molecules using VQE --  |t 99. Studies on small clusters of LiH, BeH2, and NaH --  |t 100. Quantum machine learning (QAI) --  |t Code index --  |t Index. 
588 0 |a Description based on online resource; title from PDF title page (De Gruyter, viewed December 12, 2020). 
653 0 |a Chemistry  |x Data processing. 
653 4 |a Künstliche Intelligenz. 
653 4 |a Massendaten. 
653 4 |a Theoretische Chemie. 
655 4 |a EBSCO eBooks 
776 0 8 |i Print version:  |a Gressling, Thorsten.  |t Data science in chemistry.  |d Berlin ; Boston : Walter de Gruyter GmbH, [2021]  |z 9783110629392  |w (OCoLC)1149347012 
830 0 |a De Gruyter graduate. 
856 4 0 |u https://www.lib.tsu.ru/mminfo/2023/EBSCO/2668415.pdf 
999 |c 1010747  |d 1010747