Terahertz time-domain spectroscopy of glioma patient blood plasma: Diagnosis and treatment

Gliomas, one of the most severe malignant tumors of the central nervous system, have a high mortality rate and an increased risk of recurrence. Therefore, early glioma diagnosis and the control of treatment have great significance. The blood plasma samples of glioma patients, patients with skull cra...

Full description

Bibliographic Details
Published in:Applied sciences Vol. 13, № 9. P. 5434 (1-17)
Other Authors: Cherkasova, Olga P., Vrazhnov, Denis A., Knyazkova, Anastasia I., Konnikova, Maria R., Stupak, Evgeny, Glotov, Vadim, Stupak, Vyacheslav, Nikolaev, Nazar, Paulish, Andrey, Peng, Yan, Kistenev, Yury V., Shkurinov, Alexander P.
Format: Article
Language:English
Subjects:
Online Access:http://vital.lib.tsu.ru/vital/access/manager/Repository/koha:001016967
Перейти в каталог НБ ТГУ
LEADER 03451nab a2200493 c 4500
001 koha001016967
005 20240112155816.0
007 cr |
008 240110|2023 sz s a eng d
024 7 |a 10.3390/app13095434  |2 doi 
035 |a koha001016967 
040 |a RU-ToGU  |b rus  |c RU-ToGU 
245 1 0 |a Terahertz time-domain spectroscopy of glioma patient blood plasma: Diagnosis and treatment  |c O. P. Cherkasova, D. A. Vrazhnov, A. I. Knyazkova [et al.] 
336 |a Текст 
337 |a электронный 
504 |a Библиогр.: 64 назв. 
520 3 |a Gliomas, one of the most severe malignant tumors of the central nervous system, have a high mortality rate and an increased risk of recurrence. Therefore, early glioma diagnosis and the control of treatment have great significance. The blood plasma samples of glioma patients, patients with skull craniectomy defects, and healthy donors were studied using terahertz time-domain spectroscopy (THz-TDS). An analysis of experimental THz data was performed by machine learning (ML). The ML pipeline included (i) THz spectra smoothing using the Savitzky-Golay filter, (ii) dimension reduction with principal component analysis and t-distribution stochastic neighborhood embedding methods; (iii) data separability analyzed using Support Vector Machine (SVM), Random Forest (RF), and Extreme Gradient Boosting (XGBoost). The ML models' performance was evaluated by a k-fold cross validation technique using ROC-AUC, sensitivity, and specificity metrics. It was shown that tree-based ensemble methods work more accurately than SVM. RF and XGBoost provided a better differentiation of the group of patients with glioma from healthy donors and patients with skull craniectomy defects. THz-TDS combined with ML was shown to make it possible to separate the blood plasma of patients before and after tumor removal surgery (AUC = 0.92). Thus, the applicability of THz-TDS and ML for the diagnosis of glioma and treatment monitoring has been shown 
653 |a терагерцовая спектроскопия во временной области 
653 |a машинное обучение 
653 |a глиома 
653 |a плазма крови человека 
653 |a машины опорных векторов 
653 |a случайный лес, алгоритм машинного обучения 
653 |a экстремальное повышение градиента 
655 4 |a статьи в журналах  |9 918229 
700 1 |a Cherkasova, Olga P.  |9 475691 
700 1 |a Vrazhnov, Denis A.  |9 106039 
700 1 |a Knyazkova, Anastasia I.  |9 435055 
700 1 |a Konnikova, Maria R.  |9 808876 
700 1 |a Stupak, Evgeny  |9 899602 
700 1 |a Glotov, Vadim  |9 918230 
700 1 |a Stupak, Vyacheslav  |9 918231 
700 1 |a Nikolaev, Nazar  |9 918232 
700 1 |a Paulish, Andrey  |9 918233 
700 1 |a Peng, Yan  |9 852071 
700 1 |a Kistenev, Yury V.  |9 99223 
700 1 |a Shkurinov, Alexander P.  |9 358960 
773 0 |t Applied sciences  |d 2023  |g Vol. 13, № 9. P. 5434 (1-17)  |x 2076-3417 
852 4 |a RU-ToGU 
856 4 |u http://vital.lib.tsu.ru/vital/access/manager/Repository/koha:001016967 
856 |y Перейти в каталог НБ ТГУ  |u https://koha.lib.tsu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=1016967 
908 |a статья 
999 |c 1016967  |d 1016967 
039 |b 100