Structural properties and energy spectrum of novel GaSb/AlP self-assembled quantum dots
In this work, the formation, structural properties, and energy spectrum of novel self-assembled GaSb/AlP quantum dots (SAQDs) were studied by experimental methods. The growth conditions for the SAQDs' formation by molecular beam epitaxy on both matched GaP and artificial GaP/Si substrates were...
Published in: | Nanomaterials Vol. 13, № 5. P. 910 (1-20) |
---|---|
Other Authors: | , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | http://vital.lib.tsu.ru/vital/access/manager/Repository/koha:001133162 Перейти в каталог НБ ТГУ |
Summary: | In this work, the formation, structural properties, and energy spectrum of novel self-assembled GaSb/AlP quantum dots (SAQDs) were studied by experimental methods. The growth conditions for the SAQDs' formation by molecular beam epitaxy on both matched GaP and artificial GaP/Si substrates were determined. An almost complete plastic relaxation of the elastic strain in SAQDs was reached. The strain relaxation in the SAQDs on the GaP/Si substrates does not lead to a reduction in the SAQDs luminescence efficiency, while the introduction of dislocations into SAQDs on the GaP substrates induced a strong quenching of SAQDs luminescence. Probably, this difference is caused by the introduction of Lomer 90°-dislocations without uncompensated atomic bonds in GaP/Si-based SAQDs, while threading 60°-dislocations are introduced into GaP-based SAQDs. It was shown that GaP/Si-based SAQDs have an energy spectrum of type II with an indirect bandgap and the ground electronic state belonging to the X-valley of the AlP conduction band. The hole localization energy in these SAQDs was estimated equal to 1.65-1.70 eV. This fact allows us to predict the charge storage time in the SAQDs to be as long as >>10 years, and it makes GaSb/AlP SAQDs promising objects for creating universal memory cells. |
---|---|
Bibliography: | Библиогр.: 74 назв. |
ISSN: | 2079-4991 |