A hybrid deep learning - CFD approach for modeling nanoparticles' sedimentation processes for possible application in clean energy systems
Sedimentation directly affects the thermal performance and efficiency of thermal systems such as boilers, heat exchangers, and solar collectors. This work investigates the effect of nanoparticles deposition inside a tube with possible application in parabolic solar collectors. This study combines th...
Published in: | Journal of cleaner production Vol. 399. P. 136532 (1-19) |
---|---|
Other Authors: | Mesgarpour, Mehrdad, Mahian, Omid, Zhang, Ping, Wongwises, Somchai, Wang, Lianping, Ahmadi, Goodarz, Nižetić, Sandro, Sheremet, Mikhail A., Shadloo, Mostafa Safdari |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | http://vital.lib.tsu.ru/vital/access/manager/Repository/koha:001133515 Перейти в каталог НБ ТГУ |
Similar Items
- An intelligence parameter classification approach for energy storage and natural convection and heat transfer of nano-encapsulated phase change material: Deep neural networks
- Identification of hadronic tau lepton decays using a deep neural network
-
Sigmoid activation implementation for neural networks hardware accelerators based on reconfigurable computing environments for low-power intelligent systems
by: Shatravin, Vladislav -
Стегоанализ цифровых изображений с использованием глубоких нейронных сетей и гетероассоциативных интегральных преобразований
by: Дрюченко, Михаил Анатольевич -
Нейронные сети и глубокое обучение учебный курс
by: Аггарвал, Чару
Published: (2020)