|
|
|
|
LEADER |
01981nab a2200385 c 4500 |
001 |
koha001143607 |
005 |
20240913171622.0 |
007 |
cr | |
008 |
240913|2024 ru s a eng d |
024 |
7 |
|
|a 10.17223/19988621/87/4
|2 doi
|
035 |
|
|
|a koha001143607
|
040 |
|
|
|a RU-ToGU
|b rus
|c RU-ToGU
|
100 |
1 |
|
|a Kozlovskaya, Tatyana A.
|
245 |
1 |
0 |
|a Multi-groups
|c T. A. Kozlovskaya
|
246 |
1 |
1 |
|a Мульти-группы
|
336 |
|
|
|a Текст
|
337 |
|
|
|a электронный
|
504 |
|
|
|a Библиогр.: 19 назв.
|
520 |
3 |
|
|a In the present paper we define homogeneous algebraic systems. Particular cases of these systems are semigroup (monoid, group) systems. These algebraic systems were studied by J. Loday, A. Zhuchok, T. Pirashvili, and N. Koreshkov. Quandle systems were introduced and studied by V. Bardakov, D. Fedoseev, and V. Turaev. We construct some group systems on the set of square matrices over a field . Also, we define rack systems on the set VG , where V is a vector space of dimension n over and G is a subgroup of ()nGL . Finally, we find the connection between skew braces and dimonoids.
|
653 |
|
|
|a алгебраические системы
|
653 |
|
|
|a однородные алгебраические системы
|
653 |
|
|
|a группоиды
|
653 |
|
|
|a полугруппы
|
653 |
|
|
|a моноиды
|
653 |
|
|
|a группы
|
653 |
|
|
|a полугрупповые системы
|
653 |
|
|
|a димоноиды
|
653 |
|
|
|a мульти-группы
|
653 |
|
|
|a мульти-квандлы
|
655 |
|
4 |
|a статьи в журналах
|
773 |
0 |
|
|t Вестник Томского государственного университета. Математика и механика
|d 2024
|g № 87. С. 34-43
|x 1998-8621
|w 0210-41660
|
852 |
4 |
|
|a RU-ToGU
|
856 |
4 |
|
|u http://vital.lib.tsu.ru/vital/access/manager/Repository/koha:001143607
|
908 |
|
|
|a статья
|
999 |
|
|
|c 1143607
|d 1143607
|