О генерической сложности решения уравнений над натуральными числами со сложением
Изучается генерическая сложность проблемы проверки совместности систем уравнений над натуральными числами со сложением. Доказывается NP-полнота этой проблемы, предлагается полиномиальный генерический алгоритм её решения. Доказывается, что при Р = NP и Р = ВРР для проблемы проверки совместности систе...
| Опубликовано в: : | Прикладная дискретная математика № 64. С. 72-78 |
|---|---|
| Главный автор: | |
| Формат: | Статья в журнале |
| Язык: | Russian |
| Предметы: | |
| Online-ссылка: | http://vital.lib.tsu.ru/vital/access/manager/Repository/koha:001144441 |
| Итог: | Изучается генерическая сложность проблемы проверки совместности систем уравнений над натуральными числами со сложением. Доказывается NP-полнота этой проблемы, предлагается полиномиальный генерический алгоритм её решения. Доказывается, что при Р = NP и Р = ВРР для проблемы проверки совместности систем уравнений над натуральными числами с нулём не существует сильно генерического полиномиального алгоритма. Для сильно генерического полиномиального алгоритма нет эффективного метода случайной генерации входов, на которых этот алгоритм не может решить проблему. |
|---|---|
| Библиография: | Библиогр.: 10 назв. |
| ISSN: | 2071-0410 |
