A fully conservative parallel numerical algorithm with adaptive spatial grid for solving nonlinear diffusion equations in image processing

In this paper we present simple yet efficient parallel program implementation of grid-difference method for solving nonlinear parabolic equations, which satisfies both fully conservative property and second order of approximation on non-uniform spatial grid according to geometrical sanity of a task....

Full description

Bibliographic Details
Published in:Supercomputing frontiers and innovations Vol. 6, № 1. P. 14-18
Main Author: Bulygin, Andrey D.
Other Authors: Vrazhnov, Denis A.
Format: Article
Language:English
Subjects:
Online Access:http://vital.lib.tsu.ru/vital/access/manager/Repository/vtls:000660353
Перейти в каталог НБ ТГУ
LEADER 02481nab a2200325 c 4500
001 vtls000660353
003 RU-ToGU
005 20230319165742.0
007 cr |
008 190708|2019 ru s a eng d
024 7 |a 10.14529/jsfi190103  |2 doi 
035 |a to000660353 
039 9 |a 201907091321  |c 201907081707  |d VLOAD  |y 201907081654  |z Александр Эльверович Гилязов 
040 |a RU-ToGU  |b rus  |c RU-ToGU 
100 1 |a Bulygin, Andrey D.  |9 165606 
245 1 2 |a A fully conservative parallel numerical algorithm with adaptive spatial grid for solving nonlinear diffusion equations in image processing  |c A. D. Bulygin, D. A. Vrazhnov 
504 |a Библиогр.: 9 назв. 
520 3 |a In this paper we present simple yet efficient parallel program implementation of grid-difference method for solving nonlinear parabolic equations, which satisfies both fully conservative property and second order of approximation on non-uniform spatial grid according to geometrical sanity of a task. The proposed algorithm was tested on Perona-Malik method for image noise ltering task based on differential equations. Also in this work we propose generalization of the Perona-Malik equation, which is a one of diffusion in complex-valued region type. This corresponds to the conversion to such types of nonlinear equations like Leontovich-Fock equation with a dependent on the gradient field according to the nonlinear law coefficient of diffraction. This is a special case of generalization of the Perona-Malik equation to the multicomponent case. This approach makes noise removal process more flexible by increasing its capabilities, which allows achieving better results for the task of image denoising. 
653 |a Шредингера нелинейное уравнение 
653 |a нелинейное уравнение диффузии 
653 |a Перона и Малика метод 
653 |a Леонтовича-Фока уравнение 
655 4 |a статьи в журналах  |9 879358 
700 1 |a Vrazhnov, Denis A.  |9 106039 
773 0 |t Supercomputing frontiers and innovations  |d 2019  |g Vol. 6, № 1. P. 14-18  |x 2409-6008 
852 4 |a RU-ToGU 
856 4 |u http://vital.lib.tsu.ru/vital/access/manager/Repository/vtls:000660353 
856 |y Перейти в каталог НБ ТГУ  |u https://koha.lib.tsu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=195456 
908 |a статья 
999 |c 195456  |d 195456