On the accuracy of approximation of a small celestial body motion using intermediate perturbed orbits calculated from two position vectors and three observations

We examine intermediate perturbed orbits proposed by the first author previously, defined from the two position vectors and three angular coordinates of a small celestial body. It is shown theoretically, that at a small reference time interval covering the measurements the approximation accuracy of...

Full description

Bibliographic Details
Published in:Solar system research Vol. 49, № 1. P. 51-60
Main Author: Shefer, Vladimir A.
Other Authors: Shefer, Olga V.
Format: Article
Language:English
Subjects:
Online Access:http://vital.lib.tsu.ru/vital/access/manager/Repository/vtls:000551891
Перейти в каталог НБ ТГУ
LEADER 02353nab a2200301 c 4500
001 vtls000551891
003 RU-ToGU
005 20230319173305.0
007 cr |
008 181202|2015 ru s a eng d
024 7 |a 10.1134/S0038094615010074  |2 doi 
035 |a to000551891 
039 9 |a 201812021547  |c 201611290716  |d cat202  |c 201611281749  |d VLOAD  |y 201611281731  |z Александр Эльверович Гилязов 
040 |a RU-ToGU  |b rus  |c RU-ToGU 
100 1 |a Shefer, Vladimir A.  |9 99624 
245 1 0 |a On the accuracy of approximation of a small celestial body motion using intermediate perturbed orbits calculated from two position vectors and three observations  |c V. A. Shefer, O. V. Shefer 
520 3 |a We examine intermediate perturbed orbits proposed by the first author previously, defined from the two position vectors and three angular coordinates of a small celestial body. It is shown theoretically, that at a small reference time interval covering the measurements the approximation accuracy of real movements by these orbits corresponds approximately to the third order of osculation. The smaller reference interval of time, the better this correspondence. Laws of variation of the methodical errors in constructing intermediate orbits subject to the length of reference time interval are deduced. According to these laws, the convergence rate of the methods to the exact solution (upon reducing the reference interval of time) is higher by two orders of magnitude than in the case of conventional methods using the Keplerian unperturbed orbit. The considered orbits are among the most accurate in set of orbits of their class determined by the order of osculation. The theoretical results are validated by numerical examples. 
653 |a промежуточные орбиты 
653 |a возмущение орбит 
653 |a Гаусса метод 
655 4 |a статьи в журналах  |9 879358 
700 1 |a Shefer, Olga V.  |9 100080 
773 0 |t Solar system research  |d 2015  |g Vol. 49, № 1. P. 51-60  |x 0038-0946 
852 4 |a RU-ToGU 
856 7 |u http://vital.lib.tsu.ru/vital/access/manager/Repository/vtls:000551891 
856 |y Перейти в каталог НБ ТГУ  |u https://koha.lib.tsu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=227343 
908 |a статья 
999 |c 227343  |d 227343