Tropospheric temperature measurements with the pure rotational Raman lidar technique using nonlinear calibration functions

Among lidar techniques, the pure rotational Raman (PRR) technique is the best suited for tropospheric and lower stratospheric temperature measurements. Calibration functions are required for the PRR technique to retrieve temperature profiles from lidar remote sensing data. Both temperature retrieval...

Full description

Bibliographic Details
Published in:Atmospheric measurement techniques Vol. 10, № 1. P. 315-332
Other Authors: Zuev, Vladimir V., Pravdin, Vladimir L., Pavlinskiy, Aleksei V., Nakhtigalova, Daria P., Gerasimov, Vladislav V.
Format: Article
Language:English
Subjects:
Online Access:http://vital.lib.tsu.ru/vital/access/manager/Repository/vtls:000577370
Перейти в каталог НБ ТГУ
LEADER 04000nab a2200361 c 4500
001 vtls000577370
003 RU-ToGU
005 20230319183910.0
007 cr |
008 170613|2017 gw s a eng d
024 7 |a 10.5194/amt-10-315-2017  |2 doi 
035 |a to000577370 
039 9 |a 201706141004  |c 201706131810  |d VLOAD  |y 201706131305  |z Александр Эльверович Гилязов 
040 |a RU-ToGU  |b rus  |c RU-ToGU 
245 1 0 |a Tropospheric temperature measurements with the pure rotational Raman lidar technique using nonlinear calibration functions  |c V. V. Zuev, V. V. Gerasimov, V. L. Pravdin [et.al.] 
504 |a Библиогр.: с. 331-332 
520 3 |a Among lidar techniques, the pure rotational Raman (PRR) technique is the best suited for tropospheric and lower stratospheric temperature measurements. Calibration functions are required for the PRR technique to retrieve temperature profiles from lidar remote sensing data. Both temperature retrieval accuracy and number of calibration coefficients depend on the selected function. The commonly used calibration function (linear in reciprocal temperature 1∕T with two calibration coefficients) ignores all types of broadening of individual PRR lines of atmospheric N2 and O2 molecules. However, the collisional (pressure) broadening dominates over other types of broadening of PRR lines in the troposphere and can differently affect the accuracy of tropospheric temperature measurements depending on the PRR lidar system. We recently derived the calibration function in the general analytical form that takes into account the collisional broadening of all N2 and O2 PRR lines (Gerasimov and Zuev, 2016). This general calibration function represents an infinite series and, therefore, cannot be directly used in the temperature retrieval algorithm. For this reason, its four simplest special cases (calibration functions nonlinear in 1∕T with three calibration coefficients), two of which have not been suggested before, were considered and analyzed. All the special cases take the collisional PRR lines broadening into account in varying degrees and the best function among them was determined via simulation. In this paper, we use the special cases to retrieve tropospheric temperature from real PRR lidar data. The calibration function best suited for tropospheric temperature retrievals is determined from the comparative analysis of temperature uncertainties yielded by using these functions. The absolute and relative statistical uncertainties of temperature retrieval are given in an analytical form assuming Poisson statistics of photon counting. The vertical tropospheric temperature profiles, retrieved from nighttime lidar measurements in Tomsk (56.48° N, 85.05° E; Western Siberia, Russia) on 2 October 2014 and 1 April 2015, are presented as an example of the calibration functions application. The measurements were performed using a PRR lidar designed in the Institute of Monitoring of Climatic and Ecological Systems of the Siberian Branch of the Russian Academy of Sciences for tropospheric temperature measurements. 
653 |a тропосфера 
653 |a измерение температуры 
653 |a комбинационные лидары 
653 |a калибровочные функции 
655 4 |a статьи в журналах  |9 879358 
700 1 |a Zuev, Vladimir V.  |9 565776 
700 1 |a Pravdin, Vladimir L.  |9 364048 
700 1 |a Pavlinskiy, Aleksei V.  |9 364049 
700 1 |a Nakhtigalova, Daria P.  |9 364050 
700 1 |a Gerasimov, Vladislav V.  |9 102911 
773 0 |t Atmospheric measurement techniques  |d 2017  |g Vol. 10, № 1. P. 315-332  |x 1867-1381 
852 4 |a RU-ToGU 
856 7 |u http://vital.lib.tsu.ru/vital/access/manager/Repository/vtls:000577370 
856 |y Перейти в каталог НБ ТГУ  |u https://koha.lib.tsu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=285202 
908 |a статья 
999 |c 285202  |d 285202