Self-Evolvable Systems Machine Learning in Social Media /

This monograph presents key method to successfully manage the growing  complexity of systems  where conventional engineering and scientific methodologies and technologies based on learning and adaptability come to their limits and new ways are nowadays required. The transition from adaptable to evol...

Full description

Bibliographic Details
Published in:Springer eBooks
Main Author: Iordache, Octavian (Author)
Corporate Author: SpringerLink (Online service)
Format: eBook
Language:English
Published: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2012.
Series:Understanding Complex Systems,
Subjects:
Online Access:http://dx.doi.org/10.1007/978-3-642-28882-1
Перейти в каталог НБ ТГУ
LEADER 02641nam a22004815i 4500
001 vtls000482757
003 RU-ToGU
005 20210922065040.0
007 cr nn 008mamaa
008 140711s2012 gw | s |||| 0|eng d
020 |a 9783642288821  |9 978-3-642-28882-1 
024 7 |a 10.1007/978-3-642-28882-1  |2 doi 
035 |a to000482757 
039 9 |y 201407111546  |z Александр Эльверович Гилязов 
040 |a Springer  |c Springer  |d RU-ToGU 
050 4 |a QA76.9.M35 
072 7 |a GPFC  |2 bicssc 
072 7 |a TEC000000  |2 bisacsh 
082 0 4 |a 620  |2 23 
100 1 |a Iordache, Octavian.  |e author.  |9 410549 
245 1 0 |a Self-Evolvable Systems  |h electronic resource  |b Machine Learning in Social Media /  |c by Octavian Iordache. 
260 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2012.  |9 742158 
300 |a XXI, 275 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Understanding Complex Systems,  |x 1860-0832 
505 0 |a Introduction -- General Framework -- Differential Models -- Informational Criteria -- Self-Evolvability for Physical and Chemical Systems -- Self-Evolvability for Biosystems -- Self-Evolvability for Cognitive Systems -- Control Systems -- Manufacturing Systems -- Concept Lattices -- Design of Experiments -- Perspectives. 
520 |a This monograph presents key method to successfully manage the growing  complexity of systems  where conventional engineering and scientific methodologies and technologies based on learning and adaptability come to their limits and new ways are nowadays required. The transition from adaptable to evolvable and finally to self-evolvable systems is highlighted, self-properties such as self-organization, self-configuration, and self-repairing are introduced and challenges and limitations of the self-evolvable engineering systems are evaluated. 
650 0 |a engineering.  |9 224332 
650 0 |a physics.  |9 566227 
650 1 4 |a Engineering.  |9 224332 
650 2 4 |a Complexity.  |9 303499 
650 2 4 |a Computational Intelligence.  |9 307538 
650 2 4 |a Nonlinear Dynamics.  |9 410417 
710 2 |a SpringerLink (Online service)  |9 143950 
773 0 |t Springer eBooks 
830 0 |a Understanding Complex Systems,  |9 316854 
856 4 0 |u http://dx.doi.org/10.1007/978-3-642-28882-1 
856 |y Перейти в каталог НБ ТГУ  |u https://koha.lib.tsu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=353924 
912 |a ZDB-2-PHA 
950 |a Physics and Astronomy (Springer-11651) 
999 |c 353924  |d 353924