Recommender Systems and the Social Web Leveraging Tagging Data for Recommender Systems /

There is an increasing demand for recommender systems due to the information overload users are facing on the Web. The goal of a recommender system is to provide personalized recommendations of products or services to users. With the advent of the Social Web, user-generated content has enriched the...

Full description

Bibliographic Details
Published in:Springer eBooks
Main Author: Gedikli, Fatih (Author)
Corporate Author: SpringerLink (Online service)
Format: eBook
Language:English
Published: Wiesbaden : Springer Fachmedien Wiesbaden : Imprint: Springer Vieweg, 2013.
Subjects:
Online Access:http://dx.doi.org/10.1007/978-3-658-01948-8
Перейти в каталог НБ ТГУ
LEADER 03486nam a22004815i 4500
001 vtls000485532
003 RU-ToGU
005 20210922070011.0
007 cr nn 008mamaa
008 140715s2013 gw | s |||| 0|eng d
020 |a 9783658019488  |9 978-3-658-01948-8 
024 7 |a 10.1007/978-3-658-01948-8  |2 doi 
035 |a to000485532 
039 9 |y 201407151958  |z Александр Эльверович Гилязов 
040 |a Springer  |c Springer  |d RU-ToGU 
050 4 |a QA76.9.D343 
072 7 |a UNF  |2 bicssc 
072 7 |a UYQE  |2 bicssc 
072 7 |a COM021030  |2 bisacsh 
082 0 4 |a 006.312  |2 23 
100 1 |a Gedikli, Fatih.  |e author.  |9 415730 
245 1 0 |a Recommender Systems and the Social Web  |h [electronic resource] :  |b Leveraging Tagging Data for Recommender Systems /  |c by Fatih Gedikli. 
260 |a Wiesbaden :  |b Springer Fachmedien Wiesbaden :  |b Imprint: Springer Vieweg,  |c 2013.  |9 742222 
300 |a XI, 112 p. 29 illus., 14 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
505 0 |a Recommender Systems -- Social Tagging -- Algorithms -- Explanations. 
520 |a There is an increasing demand for recommender systems due to the information overload users are facing on the Web. The goal of a recommender system is to provide personalized recommendations of products or services to users. With the advent of the Social Web, user-generated content has enriched the social dimension of the Web. As user-provided content data also tells us something about the user, one can learn the user's individual preferences from the Social Web. This opens up completely new opportunities and challenges for recommender systems research. Fatih Gedikli deals with the question of how user-provided tagging data can be used to build better recommender systems. A tag recommender algorithm is proposed which recommends tags for users to annotate their favorite online resources. The author also proposes algorithms which exploit the user-provided tagging data and produce more accurate recommendations. On the basis of this idea, he shows how tags can be used to explain to the user the automatically generated recommendations in a clear and intuitively understandable form. With his book, Fatih Gedikli gives us an outlook on the next generation of recommendation systems in the Social Web sphere. Contents -  Recommender Systems -  Social Tagging -  Algorithms -  Explanations   Target Groups ·         Researchers and students of computer science ·         Computer and web programmers   The Author Dr. Fatih Gedikli is a research assistant in computer science at TU Dortmund, Germany. 
650 0 |a Computer Science.  |9 155490 
650 0 |a Data mining.  |9 306371 
650 0 |a Information storage and retrieval systems.  |9 137013 
650 1 4 |a Computer Science.  |9 155490 
650 2 4 |a Data Mining and Knowledge Discovery.  |9 306372 
650 2 4 |a Information Storage and Retrieval.  |9 303027 
650 2 4 |a User Interfaces and Human Computer Interaction.  |9 219093 
710 2 |a SpringerLink (Online service)  |9 143950 
773 0 |t Springer eBooks 
856 4 0 |u http://dx.doi.org/10.1007/978-3-658-01948-8 
856 |y Перейти в каталог НБ ТГУ  |u https://koha.lib.tsu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=357467 
912 |a ZDB-2-SCS 
950 |a Computer Science (Springer-11645) 
999 |c 357467  |d 357467