G2-structures and quantization of non-geometric M-theory backgrounds

We describe the quantization of a four-dimensional locally non-geometric M-theory background dual to a twisted three-torus by deriving a phase space star product for deformation quantization of quasi-Poisson brackets related to the nonassociative algebra of octonions. The construction is based on a...

Full description

Bibliographic Details
Published in:Journal of high energy physics № 2. P. 099 (1-43)
Main Author: Kupriyanov, Vladislav G.
Other Authors: Szabo, Richard J.
Format: Article
Language:English
Subjects:
Online Access:http://vital.lib.tsu.ru/vital/access/manager/Repository/vtls:000577374
Перейти в каталог НБ ТГУ
LEADER 02508nab a2200313 c 4500
001 vtls000577374
003 RU-ToGU
005 20230319203529.0
007 cr |
008 170613|2017 enk s a eng d
024 7 |a 10.1007/JHEP02(2017)099  |2 doi 
035 |a to000577374 
039 9 |a 201706141016  |c 201706131646  |d VLOAD  |y 201706131332  |z Александр Эльверович Гилязов 
040 |a RU-ToGU  |b rus  |c RU-ToGU 
100 1 |a Kupriyanov, Vladislav G.  |9 441818 
245 1 0 |a G2-structures and quantization of non-geometric M-theory backgrounds  |c V. G. Kupriyanov, R. J. Szabo 
504 |a Библиогр.: 56 назв. 
520 3 |a We describe the quantization of a four-dimensional locally non-geometric M-theory background dual to a twisted three-torus by deriving a phase space star product for deformation quantization of quasi-Poisson brackets related to the nonassociative algebra of octonions. The construction is based on a choice of G2-structure which defines a nonassociative deformation of the addition law on the seven-dimensional vector space of Fourier momenta. We demonstrate explicitly that this star product reduces to that of the three-dimensional parabolic constant R-flux model in the contraction of M-theory to string theory, and use it to derive quantum phase space uncertainty relations as well as triproducts for the nonassociative geometry of the four-dimensional configuration space. By extending the G2-structure to a Spin(7)-structure, we propose a 3-algebra structure on the full eight-dimensional M2-brane phase space which reduces to the quasi-Poisson algebra after imposing a particular gauge constraint, and whose deformation quantisation simultaneously encompasses both the phase space star products and the configuration space triproducts. We demonstrate how these structures naturally fit in with previous occurences of 3-algebras in M-theory. 
653 |a некоммутативная геометрия 
653 |a квантование 
653 |a М-теория 
655 4 |a статьи в журналах  |9 879358 
700 1 |a Szabo, Richard J.  |9 441940 
773 0 |t Journal of high energy physics  |d 2017  |g № 2. P. 099 (1-43)  |x 1126-6708 
852 4 |a RU-ToGU 
856 7 |u http://vital.lib.tsu.ru/vital/access/manager/Repository/vtls:000577374 
856 |y Перейти в каталог НБ ТГУ  |u https://koha.lib.tsu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=392935 
908 |a статья 
999 |c 392935  |d 392935