Symmetry operators of the two-component Gross-Pitaevskii equation with a Manakov-type nonlocal nonlinearity
We consider an integro-differential 2-component multidimensional Gross-Pitaevskii equation with a Manakov-type cubic nonlocal nonlinearity. In the framework of the WKB-Maslov semiclassical formalism, we obtain a semiclassically reduced 2-component nonlocal Gross- Pitaevskii equation determining the...
Published in: | Journal of Physics: Conference Series Vol. 670. P. 012046 (1-13) |
---|---|
Main Author: | |
Corporate Author: | |
Other Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | http://vital.lib.tsu.ru/vital/access/manager/Repository/vtls:000535854 Перейти в каталог НБ ТГУ |
LEADER | 02561nab a2200337 c 4500 | ||
---|---|---|---|
001 | vtls000535854 | ||
003 | RU-ToGU | ||
005 | 20230319203807.0 | ||
007 | cr | | ||
008 | 181202|2016 enk s a eng d | ||
024 | 7 | |a 10.1088/1742-6596/670/1/012046 |2 doi | |
035 | |a to000535854 | ||
039 | 9 | |a 201812021544 |c 201812021543 |d staff |c 201606150852 |d cat202 |c 201606141044 |d VLOAD |y 201606141004 |z Александр Эльверович Гилязов | |
040 | |a RU-ToGU |b rus |c RU-ToGU | ||
100 | 1 | |a Shapovalov, Alexander V. |9 90375 | |
245 | 1 | 0 | |a Symmetry operators of the two-component Gross-Pitaevskii equation with a Manakov-type nonlocal nonlinearity |c A. V. Shapovalov, A. Y. Trifonov, A. L. Lisok |
504 | |a Библиогр.: 17 назв. | ||
520 | 3 | |a We consider an integro-differential 2-component multidimensional Gross-Pitaevskii equation with a Manakov-type cubic nonlocal nonlinearity. In the framework of the WKB-Maslov semiclassical formalism, we obtain a semiclassically reduced 2-component nonlocal Gross- Pitaevskii equation determining the leading term of the semiclassical asymptotic solution. For the reduced Gross-Pitaevskii equation we construct symmetry operators which transform arbitrary solution of the equation into another solution. Constructing the symmetry operator is based on the Cauchy problem solution technique and uses an intertwining operator which connects two solutions of the reduced Gross-Pitaevskii equation. General structure of the symmetry operator is illustrated with a 1D case for which a family of symmetry operators is found explicitly and a set of exact solutions is generated. | |
653 | |a Гросса-Питаевского уравнение нелокальное | ||
653 | |a нелинейность | ||
653 | |a симметричные операторы | ||
655 | 4 | |a статьи в журналах |9 879358 | |
700 | 1 | |a Trifonov, Andrey Yu. |d 1963-2021 |9 94516 | |
700 | 1 | |a Lisok, Aleksandr L. |9 404750 | |
710 | 2 | |a Томский государственный университет |b Физический факультет |b Кафедра теоретической физики |9 82937 | |
773 | 0 | |t Journal of Physics: Conference Series |d 2016 |g Vol. 670. P. 012046 (1-13) |x 1742-6588 | |
852 | 4 | |a RU-ToGU | |
856 | 7 | |u http://vital.lib.tsu.ru/vital/access/manager/Repository/vtls:000535854 | |
856 | |y Перейти в каталог НБ ТГУ |u https://koha.lib.tsu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=395386 | ||
908 | |a статья | ||
999 | |c 395386 |d 395386 |