Symmetry operators of the two-component Gross-Pitaevskii equation with a Manakov-type nonlocal nonlinearity

We consider an integro-differential 2-component multidimensional Gross-Pitaevskii equation with a Manakov-type cubic nonlocal nonlinearity. In the framework of the WKB-Maslov semiclassical formalism, we obtain a semiclassically reduced 2-component nonlocal Gross- Pitaevskii equation determining the...

Full description

Bibliographic Details
Published in:Journal of Physics: Conference Series Vol. 670. P. 012046 (1-13)
Main Author: Shapovalov, Alexander V.
Corporate Author: Томский государственный университет Физический факультет Кафедра теоретической физики
Other Authors: Trifonov, Andrey Yu. 1963-2021, Lisok, Aleksandr L.
Format: Article
Language:English
Subjects:
Online Access:http://vital.lib.tsu.ru/vital/access/manager/Repository/vtls:000535854
Перейти в каталог НБ ТГУ
LEADER 02561nab a2200337 c 4500
001 vtls000535854
003 RU-ToGU
005 20230319203807.0
007 cr |
008 181202|2016 enk s a eng d
024 7 |a 10.1088/1742-6596/670/1/012046  |2 doi 
035 |a to000535854 
039 9 |a 201812021544  |c 201812021543  |d staff  |c 201606150852  |d cat202  |c 201606141044  |d VLOAD  |y 201606141004  |z Александр Эльверович Гилязов 
040 |a RU-ToGU  |b rus  |c RU-ToGU 
100 1 |a Shapovalov, Alexander V.  |9 90375 
245 1 0 |a Symmetry operators of the two-component Gross-Pitaevskii equation with a Manakov-type nonlocal nonlinearity  |c A. V. Shapovalov, A. Y. Trifonov, A. L. Lisok 
504 |a Библиогр.: 17 назв. 
520 3 |a We consider an integro-differential 2-component multidimensional Gross-Pitaevskii equation with a Manakov-type cubic nonlocal nonlinearity. In the framework of the WKB-Maslov semiclassical formalism, we obtain a semiclassically reduced 2-component nonlocal Gross- Pitaevskii equation determining the leading term of the semiclassical asymptotic solution. For the reduced Gross-Pitaevskii equation we construct symmetry operators which transform arbitrary solution of the equation into another solution. Constructing the symmetry operator is based on the Cauchy problem solution technique and uses an intertwining operator which connects two solutions of the reduced Gross-Pitaevskii equation. General structure of the symmetry operator is illustrated with a 1D case for which a family of symmetry operators is found explicitly and a set of exact solutions is generated. 
653 |a Гросса-Питаевского уравнение нелокальное 
653 |a нелинейность 
653 |a симметричные операторы 
655 4 |a статьи в журналах  |9 879358 
700 1 |a Trifonov, Andrey Yu.  |d 1963-2021  |9 94516 
700 1 |a Lisok, Aleksandr L.  |9 404750 
710 2 |a Томский государственный университет  |b Физический факультет  |b Кафедра теоретической физики  |9 82937 
773 0 |t Journal of Physics: Conference Series  |d 2016  |g Vol. 670. P. 012046 (1-13)  |x 1742-6588 
852 4 |a RU-ToGU 
856 7 |u http://vital.lib.tsu.ru/vital/access/manager/Repository/vtls:000535854 
856 |y Перейти в каталог НБ ТГУ  |u https://koha.lib.tsu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=395386 
908 |a статья 
999 |c 395386  |d 395386