Person Re-Identification

Re-identification offers a useful tool for non-invasive biometric validation, surveillance, and human-robot interaction in a broad range of applications from crowd traffic management to personalised healthcare. This comprehensive volume is the first work of its kind dedicated to addressing the chall...

Full description

Bibliographic Details
Published in:Springer eBooks
Corporate Author: SpringerLink (Online service)
Other Authors: Gong, Shaogang (Editor), Cristani, Marco (Editor), Yan, Shuicheng (Editor), Loy, Chen Change (Editor)
Format: eBook
Language:English
Published: London : Springer London : Imprint: Springer, 2014.
Series:Advances in Computer Vision and Pattern Recognition,
Subjects:
Online Access:http://dx.doi.org/10.1007/978-1-4471-6296-4
Перейти в каталог НБ ТГУ
LEADER 05452nam a22006255i 4500
001 vtls000540666
003 RU-ToGU
005 20210922081746.0
007 cr nn 008mamaa
008 160915s2014 xxk| s |||| 0|eng d
020 |a 9781447162964  |9 978-1-4471-6296-4 
024 7 |a 10.1007/978-1-4471-6296-4  |2 doi 
035 |a to000540666 
039 9 |y 201609152132  |z Александр Эльверович Гилязов 
040 |a Springer  |c Springer  |d RU-ToGU 
050 4 |a TA1637-1638 
050 4 |a TA1637-1638 
072 7 |a UYT  |2 bicssc 
072 7 |a UYQV  |2 bicssc 
072 7 |a COM012000  |2 bisacsh 
072 7 |a COM016000  |2 bisacsh 
082 0 4 |a 006.6  |2 23 
082 0 4 |a 006.37  |2 23 
245 1 0 |a Person Re-Identification  |h electronic resource  |c edited by Shaogang Gong, Marco Cristani, Shuicheng Yan, Chen Change Loy. 
260 |a London :  |b Springer London :  |b Imprint: Springer,  |c 2014.  |9 733388 
300 |a XVIII, 445 p. 163 illus., 154 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Advances in Computer Vision and Pattern Recognition,  |x 2191-6586 
505 0 |a The Re-Identification Challenge -- Part I: Features and Representations -- Discriminative Image Descriptors for Person Re-Identification -- SDALF -- Re-Identification by Covariance Descriptors -- Attributes-Based Re-Identification -- Person Re-Identification by Attribute-Assisted Clothes Appearance -- Person Re-Identification by Articulated Appearance Matching -- One-Shot Person Re-Identification with a Consumer Depth Camera -- Group Association -- Evaluating Feature Importance for Re-Identification -- Part II: Matching and Distance Metric -- Learning Appearance Transfer for Person Re-Identification -- Mahalanobis Distance Learning for Person Re-Identification -- Dictionary-Based Domain Adaptation Methods for the Re-Identification of Faces -- From Re-Identification to Identity Inference -- Re-Identification for Improved People Tracking -- Part III: Evaluation and Application -- Benchmarking for Person Re-Identification -- Person Re-Identification -- People Search with Textual Queries about Clothing Appearance Attributes -- Large Scale Camera Topology Mapping -- Scalable Multi-Camera Tracking in a Metropolis. 
520 |a Re-identification offers a useful tool for non-invasive biometric validation, surveillance, and human-robot interaction in a broad range of applications from crowd traffic management to personalised healthcare. This comprehensive volume is the first work of its kind dedicated to addressing the challenge of Person Re-Identification, presenting insights from an international selection of leading authorities in the field. Taking a strongly multidisciplinary approach, the text provides an in-depth discussion of recent developments and state-of-the-art methods drawn from the computer vision, pattern recognition and machine learning communities, embracing both fundamental research and practical applications. Topics and features: Introduces examples of robust feature representations, reviews salient feature weighting and selection mechanisms, and examines the benefits of semantic attributes Describes how to segregate meaningful body parts from background clutter Examines the use of 3D depth images, and contextual constraints derived from the visual appearance of a group Reviews approaches to feature transfer function and distance metric learning, and discusses potential solutions to issues of data scalability and identity inference Investigates the limitations of existing benchmark datasets, presents strategies for camera topology inference, and describes techniques for improving post-rank search efficiency Explores the design rationale and implementation considerations of building a practical re-identification system This timely collection will be of great interest to academics, industrial researchers and postgraduates involved in computer vision and machine learning, database image retrieval, big data mining, and search engines, as well as to developers keen to exploit this emerging technology for commercial applications. 
650 0 |a Computer Science.  |9 155490 
650 0 |a Artificial intelligence.  |9 274099 
650 0 |a Computer vision.  |9 274100 
650 0 |a Optical pattern recognition.  |9 304126 
650 1 4 |a Computer Science.  |9 155490 
650 2 4 |a Image Processing and Computer Vision.  |9 303601 
650 2 4 |a Pattern Recognition.  |9 304129 
650 2 4 |a Math Applications in Computer Science.  |9 303284 
650 2 4 |a Information Systems Applications (incl. Internet).  |9 299051 
650 2 4 |a User Interfaces and Human Computer Interaction.  |9 219093 
650 2 4 |a Artificial Intelligence (incl. Robotics).  |9 274102 
700 1 |a Gong, Shaogang.  |e editor.  |9 323123 
700 1 |a Cristani, Marco.  |e editor.  |9 445035 
700 1 |a Yan, Shuicheng.  |e editor.  |9 412674 
700 1 |a Loy, Chen Change.  |e editor.  |9 445036 
710 2 |a SpringerLink (Online service)  |9 143950 
773 0 |t Springer eBooks 
830 0 |a Advances in Computer Vision and Pattern Recognition,  |9 413327 
856 4 0 |u http://dx.doi.org/10.1007/978-1-4471-6296-4 
856 |y Перейти в каталог НБ ТГУ  |u https://koha.lib.tsu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=398198 
912 |a ZDB-2-SCS 
950 |a Computer Science (Springer-11645) 
999 |c 398198  |d 398198