Multivariate Calculus and Geometry
Multivariate calculus can be understood best by combining geometric insight, intuitive arguments, detailed explanations and mathematical reasoning. This textbook has successfully followed this programme. It additionally provides a solid description of the basic concepts, via familiar examples, which...
Published in: | Springer eBooks |
---|---|
Main Author: | |
Corporate Author: | |
Format: | eBook |
Language: | English |
Published: |
London :
Springer London : Imprint: Springer,
2014.
|
Edition: | 3rd ed. 2014. |
Series: | Springer Undergraduate Mathematics Series,
|
Subjects: | |
Online Access: | http://dx.doi.org/10.1007/978-1-4471-6419-7 Перейти в каталог НБ ТГУ |
LEADER | 03046nam a22004575i 4500 | ||
---|---|---|---|
001 | vtls000540704 | ||
003 | RU-ToGU | ||
005 | 20210922081753.0 | ||
007 | cr nn 008mamaa | ||
008 | 160915s2014 xxk| s |||| 0|eng d | ||
020 | |a 9781447164197 |9 978-1-4471-6419-7 | ||
024 | 7 | |a 10.1007/978-1-4471-6419-7 |2 doi | |
035 | |a to000540704 | ||
039 | 9 | |y 201609152133 |z Александр Эльверович Гилязов | |
040 | |a Springer |c Springer |d RU-ToGU | ||
050 | 4 | |a QA1-939 | |
072 | 7 | |a PB |2 bicssc | |
072 | 7 | |a MAT000000 |2 bisacsh | |
082 | 0 | 4 | |a 510 |2 23 |
100 | 1 | |a Dineen, Seán. |e author. |9 445092 | |
245 | 1 | 0 | |a Multivariate Calculus and Geometry |h electronic resource |c by Seán Dineen. |
250 | |a 3rd ed. 2014. | ||
260 | |a London : |b Springer London : |b Imprint: Springer, |c 2014. |9 733388 | ||
300 | |a XIV, 257 p. 103 illus. |b online resource. | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
490 | 1 | |a Springer Undergraduate Mathematics Series, |x 1615-2085 | |
505 | 0 | |a Introduction to Differentiable Functions -- Level Sets and Tangent Spaces -- Lagrange Multipliers -- Maxima and Minima on Open Sets -- Curves in Rn -- Line Integrals -- The Frenet-Serret Equations -- Geometry of Curves in R3 -- Double Integration -- Parametrized Surfaces in R3 -- Surface Area -- Surface Integrals -- Stokes' Theorem -- Triple Integrals -- The Divergence Theorem -- Geometry of Surfaces in R3 -- Gaussian Curvature -- Geodesic Curvature. | |
520 | |a Multivariate calculus can be understood best by combining geometric insight, intuitive arguments, detailed explanations and mathematical reasoning. This textbook has successfully followed this programme. It additionally provides a solid description of the basic concepts, via familiar examples, which are then tested in technically demanding situations. In this new edition the introductory chapter and two of the chapters on the geometry of surfaces have been revised. Some exercises have been replaced and others provided with expanded solutions. Familiarity with partial derivatives and a course in linear algebra are essential prerequisites for readers of this book. Multivariate Calculus and Geometry is aimed primarily at higher level undergraduates in the mathematical sciences. The inclusion of many practical examples involving problems of several variables will appeal to mathematics, science and engineering students. | ||
650 | 0 | |a mathematics. |9 566183 | |
650 | 1 | 4 | |a Mathematics. |9 566184 |
650 | 2 | 4 | |a Mathematics, general. |9 304764 |
710 | 2 | |a SpringerLink (Online service) |9 143950 | |
773 | 0 | |t Springer eBooks | |
830 | 0 | |a Springer Undergraduate Mathematics Series, |9 314949 | |
856 | 4 | 0 | |u http://dx.doi.org/10.1007/978-1-4471-6419-7 |
856 | |y Перейти в каталог НБ ТГУ |u https://koha.lib.tsu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=398240 | ||
912 | |a ZDB-2-SMA | ||
950 | |a Mathematics and Statistics (Springer-11649) | ||
999 | |c 398240 |d 398240 |