Multivariate Calculus and Geometry

Multivariate calculus can be understood best by combining geometric insight, intuitive arguments, detailed explanations and mathematical reasoning. This textbook has successfully followed this programme. It additionally provides a solid description of the basic concepts, via familiar examples, which...

Full description

Bibliographic Details
Published in:Springer eBooks
Main Author: Dineen, Seán (Author)
Corporate Author: SpringerLink (Online service)
Format: eBook
Language:English
Published: London : Springer London : Imprint: Springer, 2014.
Edition:3rd ed. 2014.
Series:Springer Undergraduate Mathematics Series,
Subjects:
Online Access:http://dx.doi.org/10.1007/978-1-4471-6419-7
Перейти в каталог НБ ТГУ
LEADER 03046nam a22004575i 4500
001 vtls000540704
003 RU-ToGU
005 20210922081753.0
007 cr nn 008mamaa
008 160915s2014 xxk| s |||| 0|eng d
020 |a 9781447164197  |9 978-1-4471-6419-7 
024 7 |a 10.1007/978-1-4471-6419-7  |2 doi 
035 |a to000540704 
039 9 |y 201609152133  |z Александр Эльверович Гилязов 
040 |a Springer  |c Springer  |d RU-ToGU 
050 4 |a QA1-939 
072 7 |a PB  |2 bicssc 
072 7 |a MAT000000  |2 bisacsh 
082 0 4 |a 510  |2 23 
100 1 |a Dineen, Seán.  |e author.  |9 445092 
245 1 0 |a Multivariate Calculus and Geometry  |h electronic resource  |c by Seán Dineen. 
250 |a 3rd ed. 2014. 
260 |a London :  |b Springer London :  |b Imprint: Springer,  |c 2014.  |9 733388 
300 |a XIV, 257 p. 103 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Springer Undergraduate Mathematics Series,  |x 1615-2085 
505 0 |a Introduction to Differentiable Functions -- Level Sets and Tangent Spaces -- Lagrange Multipliers -- Maxima and Minima on Open Sets -- Curves in Rn -- Line Integrals -- The Frenet-Serret Equations -- Geometry of Curves in R3 -- Double Integration -- Parametrized Surfaces in R3 -- Surface Area -- Surface Integrals -- Stokes' Theorem -- Triple Integrals -- The Divergence Theorem -- Geometry of Surfaces in R3 -- Gaussian Curvature -- Geodesic Curvature. 
520 |a Multivariate calculus can be understood best by combining geometric insight, intuitive arguments, detailed explanations and mathematical reasoning. This textbook has successfully followed this programme. It additionally provides a solid description of the basic concepts, via familiar examples, which are then tested in technically demanding situations. In this new edition the introductory chapter and two of the chapters on the geometry of surfaces have been revised. Some exercises have been replaced and others provided with expanded solutions. Familiarity with partial derivatives and a course in linear algebra are essential prerequisites for readers of this book. Multivariate Calculus and Geometry is aimed primarily at higher level undergraduates in the mathematical sciences. The inclusion of many practical examples involving problems of several variables will appeal to mathematics, science and engineering students. 
650 0 |a mathematics.  |9 566183 
650 1 4 |a Mathematics.  |9 566184 
650 2 4 |a Mathematics, general.  |9 304764 
710 2 |a SpringerLink (Online service)  |9 143950 
773 0 |t Springer eBooks 
830 0 |a Springer Undergraduate Mathematics Series,  |9 314949 
856 4 0 |u http://dx.doi.org/10.1007/978-1-4471-6419-7 
856 |y Перейти в каталог НБ ТГУ  |u https://koha.lib.tsu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=398240 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649) 
999 |c 398240  |d 398240