The Compressed Word Problem for Groups

The Compressed Word Problem for Groups provides a detailed exposition of known results on the compressed word problem, emphasizing efficient algorithms for the compressed word problem in various groups. The author presents the necessary background along with the most recent results on the compressed...

Full description

Bibliographic Details
Published in:Springer eBooks
Main Author: Lohrey, Markus (Author)
Corporate Author: SpringerLink (Online service)
Format: eBook
Language:English
Published: New York, NY : Springer New York : Imprint: Springer, 2014.
Series:SpringerBriefs in Mathematics,
Subjects:
Online Access:http://dx.doi.org/10.1007/978-1-4939-0748-9
Перейти в каталог НБ ТГУ
LEADER 03564nam a22005055i 4500
001 vtls000541565
003 RU-ToGU
005 20210922081930.0
007 cr nn 008mamaa
008 160915s2014 xxu| s |||| 0|eng d
020 |a 9781493907489  |9 978-1-4939-0748-9 
024 7 |a 10.1007/978-1-4939-0748-9  |2 doi 
035 |a to000541565 
039 9 |y 201609152142  |z Александр Эльверович Гилязов 
040 |a Springer  |c Springer  |d RU-ToGU 
050 4 |a QA174-183 
072 7 |a PBG  |2 bicssc 
072 7 |a MAT002010  |2 bisacsh 
082 0 4 |a 512.2  |2 23 
100 1 |a Lohrey, Markus.  |e author.  |9 445968 
245 1 4 |a The Compressed Word Problem for Groups  |h electronic resource  |c by Markus Lohrey. 
260 |a New York, NY :  |b Springer New York :  |b Imprint: Springer,  |c 2014.  |9 724206 
300 |a XII, 153 p. 27 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a SpringerBriefs in Mathematics,  |x 2191-8198 
505 0 |a 1. Preliminaries from Theoretical Computer Science -- 2. Preliminaries from Combinatorial Group Theory -- 3. Algorithms on Compressed Words -- 4. The Compressed Word Problem -- 5. The Compressed Word Problem in Graph Products -- 6. The Compressed Word Problem in HNN-Extensions -- 7.Outlook -- References -- Index. 
520 |a The Compressed Word Problem for Groups provides a detailed exposition of known results on the compressed word problem, emphasizing efficient algorithms for the compressed word problem in various groups. The author presents the necessary background along with the most recent results on the compressed word problem to create a cohesive self-contained book accessible to computer scientists as well as mathematicians. Readers will quickly reach the frontier of current research which makes the book especially appealing for students looking for a currently active research topic at the intersection of group theory and computer science. The word problem introduced in 1910 by Max Dehn is one of the most important decision problems in group theory. For many groups, highly efficient algorithms for the word problem exist. In recent years, a new technique based on data compression for providing more efficient algorithms for word problems, has been developed, by representing long words over group generators in a compressed form using a straight-line program. Algorithmic techniques used for manipulating compressed words has shown that the compressed word problem can be solved in polynomial time for a large class of groups such as free groups, graph groups and nilpotent groups. These results have important implications for algorithmic questions related to automorphism groups. 
650 0 |a mathematics.  |9 566183 
650 0 |a Group theory.  |9 303360 
650 0 |a Topological Groups.  |9 305077 
650 0 |a Global analysis (Mathematics).  |9 303497 
650 1 4 |a Mathematics.  |9 566184 
650 2 4 |a Group Theory and Generalizations.  |9 303362 
650 2 4 |a Topological Groups, Lie Groups.  |9 305078 
650 2 4 |a analysis.  |9 303498 
710 2 |a SpringerLink (Online service)  |9 143950 
773 0 |t Springer eBooks 
830 0 |a SpringerBriefs in Mathematics,  |9 445669 
856 4 0 |u http://dx.doi.org/10.1007/978-1-4939-0748-9 
856 |y Перейти в каталог НБ ТГУ  |u https://koha.lib.tsu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=398769 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649) 
999 |c 398769  |d 398769