Positional Games

This text serves as a thorough introduction to the rapidly developing field of positional games. This area constitutes an important branch of combinatorics, whose aim it is to systematically develop an extensive mathematical basis for a variety of two-player perfect information games. These range fr...

Full description

Bibliographic Details
Published in:Springer eBooks
Main Authors: Hefetz, Dan (Author), Krivelevich, Michael (Author), Stojaković, Miloš (Author), Szabó, Tibor (Author)
Corporate Author: SpringerLink (Online service)
Format: eBook
Language:English
Published: Basel : Springer Basel : Imprint: Birkhäuser, 2014.
Series:Oberwolfach Seminars,
Subjects:
Online Access:http://dx.doi.org/10.1007/978-3-0348-0825-5
Перейти в каталог НБ ТГУ
LEADER 03124nam a22005055i 4500
001 vtls000541813
003 RU-ToGU
005 20210922082121.0
007 cr nn 008mamaa
008 160915s2014 sz | s |||| 0|eng d
020 |a 9783034808255  |9 978-3-0348-0825-5 
024 7 |a 10.1007/978-3-0348-0825-5  |2 doi 
035 |a to000541813 
039 9 |y 201609152145  |z Александр Эльверович Гилязов 
040 |a Springer  |c Springer  |d RU-ToGU 
050 4 |a QA164-167.2 
072 7 |a PBV  |2 bicssc 
072 7 |a MAT036000  |2 bisacsh 
082 0 4 |a 511.6  |2 23 
100 1 |a Hefetz, Dan.  |e author.  |9 446993 
245 1 0 |a Positional Games  |h electronic resource  |c by Dan Hefetz, Michael Krivelevich, Miloš Stojaković, Tibor Szabó. 
260 |a Basel :  |b Springer Basel :  |b Imprint: Birkhäuser,  |c 2014.  |9 742206 
300 |a X, 146 p. 13 illus., 8 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Oberwolfach Seminars,  |x 1661-237X ;  |v 44 
505 0 |a Preface -- 1 Introduction -- 2 Maker-Breaker Games -- 3 Biased Games -- 4 Avoider-Enforcer Games -- 5 The Connectivity Game -- 6 The Hamiltonicity Game -- 7 Fast and Strong -- 8 Random Boards -- 9 The Neighborhood Conjecture -- Bibliography. 
520 |a This text serves as a thorough introduction to the rapidly developing field of positional games. This area constitutes an important branch of combinatorics, whose aim it is to systematically develop an extensive mathematical basis for a variety of two-player perfect information games. These range from such popular games as Tic-Tac-Toe and Hex to purely abstract games played on graphs and hypergraphs. The subject of positional games is strongly related to several other branches of combinatorics such as Ramsey theory, extremal graph and set theory, and the probabilistic method. These notes cover a variety of topics in positional games, including both classical results and recent important developments. They are presented in an accessible way and are accompanied by exercises of varying difficulty, helping the reader to better understand the theory. The text will benefit both researchers and graduate students in combinatorics and adjacent fields. 
650 0 |a mathematics.  |9 566183 
650 0 |a Combinatorics.  |9 304006 
650 1 4 |a Mathematics.  |9 566184 
650 2 4 |a Combinatorics.  |9 304006 
650 2 4 |a Game Theory, Economics, Social and Behav. Sciences.  |9 304112 
700 1 |a Krivelevich, Michael.  |e author.  |9 446994 
700 1 |a Stojaković, Miloš.  |e author.  |9 446995 
700 1 |a Szabó, Tibor.  |e author.  |9 446996 
710 2 |a SpringerLink (Online service)  |9 143950 
773 0 |t Springer eBooks 
830 0 |a Oberwolfach Seminars,  |9 330504 
856 4 0 |u http://dx.doi.org/10.1007/978-3-0348-0825-5 
856 |y Перейти в каталог НБ ТГУ  |u https://koha.lib.tsu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=399364 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649) 
999 |c 399364  |d 399364