An Introductory Course in Functional Analysis

Based on a graduate course by the celebrated analyst Nigel Kalton, this well-balanced introduction to functional analysis makes clear not only how, but why, the field developed. All major topics belonging to a first course in functional analysis are covered. However, unlike traditional introductions...

Full description

Bibliographic Details
Published in:Springer eBooks
Main Authors: Bowers, Adam (Author), Kalton, Nigel J. (Author)
Corporate Author: SpringerLink (Online service)
Format: eBook
Language:English
Published: New York, NY : Springer New York : Imprint: Springer, 2014.
Series:Universitext,
Subjects:
Online Access:http://dx.doi.org/10.1007/978-1-4939-1945-1
Перейти в каталог НБ ТГУ
LEADER 02982nam a22004695i 4500
001 vtls000541723
003 RU-ToGU
005 20210922082135.0
007 cr nn 008mamaa
008 160915s2014 xxu| s |||| 0|eng d
020 |a 9781493919451  |9 978-1-4939-1945-1 
024 7 |a 10.1007/978-1-4939-1945-1  |2 doi 
035 |a to000541723 
039 9 |y 201609152144  |z Александр Эльверович Гилязов 
040 |a Springer  |c Springer  |d RU-ToGU 
050 4 |a QA319-329.9 
072 7 |a PBKF  |2 bicssc 
072 7 |a MAT037000  |2 bisacsh 
082 0 4 |a 515.7  |2 23 
100 1 |a Bowers, Adam.  |e author.  |9 447120 
245 1 3 |a An Introductory Course in Functional Analysis  |h electronic resource  |c by Adam Bowers, Nigel J. Kalton. 
260 |a New York, NY :  |b Springer New York :  |b Imprint: Springer,  |c 2014.  |9 724206 
300 |a XVI, 232 p. 2 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Universitext,  |x 0172-5939 
505 0 |a Foreword -- Preface -- 1 Introduction.- 2 Classical Banach spaces and their duals -- 3 The Hahn-Banach theorems.- 4 Consequences of completeness -- 5 Consequences of convexity -- 6 Compact operators and Fredholm theory -- 7 Hilbert space theory -- 8 Banach algebras -- A Basics of measure theory -- B Results from other areas of mathematics -- References -- Index. 
520 |a Based on a graduate course by the celebrated analyst Nigel Kalton, this well-balanced introduction to functional analysis makes clear not only how, but why, the field developed. All major topics belonging to a first course in functional analysis are covered. However, unlike traditional introductions to the subject, Banach spaces are emphasized over Hilbert spaces, and many details are presented in a novel manner, such as the proof of the Hahn-Banach theorem based on an inf-convolution technique, the proof of Schauder's theorem, and the proof of the Milman-Pettis theorem. With the inclusion of many illustrative examples and exercises, An Introductory Course in Functional Analysis equips the reader to apply the theory and to master its subtleties. It is therefore well-suited as a textbook for a one- or two-semester introductory course in functional analysis or as a companion for independent study. 
650 0 |a mathematics.  |9 566183 
650 0 |a Functional analysis.  |9 566329 
650 1 4 |a Mathematics.  |9 566184 
650 2 4 |a Functional Analysis.  |9 566330 
700 1 |a Kalton, Nigel J.  |e author.  |9 305154 
710 2 |a SpringerLink (Online service)  |9 143950 
773 0 |t Springer eBooks 
830 0 |a Universitext,  |9 112098 
856 4 0 |u http://dx.doi.org/10.1007/978-1-4939-1945-1 
856 |y Перейти в каталог НБ ТГУ  |u https://koha.lib.tsu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=399435 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649) 
999 |c 399435  |d 399435