Where is the Gödel-point hiding: Gentzen's Consistency Proof of 1936 and His Representation of Constructive Ordinals

This book explains the first published consistency proof of PA. It contains the original Gentzen's proof, but it uses modern terminology and examples to illustrate the essential notions. The author comments on Gentzen's steps which are supplemented with exact calculations and parts of form...

Full description

Bibliographic Details
Published in:Springer eBooks
Main Author: Horská, Anna (Author)
Corporate Author: SpringerLink (Online service)
Format: eBook
Language:English
Published: Cham : Springer International Publishing : Imprint: Springer, 2014.
Series:SpringerBriefs in Philosophy,
Subjects:
Online Access:http://dx.doi.org/10.1007/978-3-319-02171-3
Перейти в каталог НБ ТГУ
LEADER 02716nam a22004815i 4500
001 vtls000542235
003 RU-ToGU
005 20210922082141.0
007 cr nn 008mamaa
008 160915s2014 gw | s |||| 0|eng d
020 |a 9783319021713  |9 978-3-319-02171-3 
024 7 |a 10.1007/978-3-319-02171-3  |2 doi 
035 |a to000542235 
039 9 |y 201609152150  |z Александр Эльверович Гилязов 
040 |a Springer  |c Springer  |d RU-ToGU 
050 4 |a BC1-199 
072 7 |a HPL  |2 bicssc 
072 7 |a PHI011000  |2 bisacsh 
082 0 4 |a 160  |2 23 
100 1 |a Horská, Anna.  |e author.  |9 447178 
245 1 0 |a Where is the Gödel-point hiding: Gentzen's Consistency Proof of 1936 and His Representation of Constructive Ordinals  |h electronic resource  |c by Anna Horská. 
260 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2014.  |9 742221 
300 |a IX, 77 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a SpringerBriefs in Philosophy,  |x 2211-4548 
505 0 |a Acknowledgements -- 1 Introduction -- 2 Preliminaries -- 3 Ordinal numbers -- 4 Consistency proof -- Index -- References. 
520 |a This book explains the first published consistency proof of PA. It contains the original Gentzen's proof, but it uses modern terminology and examples to illustrate the essential notions. The author comments on Gentzen's steps which are supplemented with exact calculations and parts of formal derivations. A notable aspect of the proof is the representation of ordinal numbers that was developed by Gentzen. This representation is analysed and connection to set-theoretical representation is found, namely an algorithm for translating Gentzen's notation into Cantor normal form. The topic should interest researchers and students who work on proof theory, history of proof theory or Hilbert's program and who do not mind reading mathematical texts. 
650 0 |a Philosophy (General).  |9 566367 
650 0 |a logic.  |9 295753 
650 0 |a Logic, Symbolic and mathematical.  |9 293145 
650 1 4 |a Philosophy.  |9 138650 
650 2 4 |a Logic.  |9 295753 
650 2 4 |a Mathematical Logic and Foundations.  |9 306112 
710 2 |a SpringerLink (Online service)  |9 143950 
773 0 |t Springer eBooks 
830 0 |a SpringerBriefs in Philosophy,  |9 447179 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-02171-3 
856 |y Перейти в каталог НБ ТГУ  |u https://koha.lib.tsu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=399466 
912 |a ZDB-2-SHU 
950 |a Humanities, Social Sciences and Law (Springer-11648) 
999 |c 399466  |d 399466