Separable Type Representations of Matrices and Fast Algorithms Volume 2 Eigenvalue Method /

This two-volume work presents a systematic theoretical and computational study of several types of generalizations of separable matrices. The primary focus is on fast algorithms (many of linear complexity) for matrices in semiseparable, quasiseparable, band and companion form. The work examines algo...

Full description

Bibliographic Details
Published in:Springer eBooks
Main Authors: Eidelman, Yuli (Author), Gohberg, Israel (Author), Haimovici, Iulian (Author)
Corporate Author: SpringerLink (Online service)
Format: eBook
Language:English
Published: Basel : Springer Basel : Imprint: Birkhäuser, 2014.
Series:Operator Theory: Advances and Applications,
Subjects:
Online Access:http://dx.doi.org/10.1007/978-3-0348-0612-1
Перейти в каталог НБ ТГУ
LEADER 04617nam a22005055i 4500
001 vtls000541796
003 RU-ToGU
005 20210922082240.0
007 cr nn 008mamaa
008 160915s2014 sz | s |||| 0|eng d
020 |a 9783034806121  |9 978-3-0348-0612-1 
024 7 |a 10.1007/978-3-0348-0612-1  |2 doi 
035 |a to000541796 
039 9 |y 201609152145  |z Александр Эльверович Гилязов 
040 |a Springer  |c Springer  |d RU-ToGU 
050 4 |a QA184-205 
072 7 |a PBF  |2 bicssc 
072 7 |a MAT002050  |2 bisacsh 
082 0 4 |a 512.5  |2 23 
100 1 |a Eidelman, Yuli.  |e author.  |9 333923 
245 1 0 |a Separable Type Representations of Matrices and Fast Algorithms  |h electronic resource  |b Volume 2 Eigenvalue Method /  |c by Yuli Eidelman, Israel Gohberg, Iulian Haimovici. 
260 |a Basel :  |b Springer Basel :  |b Imprint: Birkhäuser,  |c 2014.  |9 742206 
300 |a XI, 359 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Operator Theory: Advances and Applications,  |x 0255-0156 ;  |v 235 
505 0 |a Part 5. The eigenvalue structure of order one quasiseparable matrices -- 21. Quasiseparable of order one matrices. Characteristic polynomials -- 22. Eigenvalues with geometric multiplicity one -- 23. Kernels of quasiseparable of order one matrices -- 24. Multiple eigenvalues -- Part 6. Divide and conquer method for eigenproblems -- 25. Divide step -- 26. Conquer step and rational matrix functions eigenproblem -- 27. Complete algorithm for Hermitian matrices -- 28. Complete algorithm for unitary Hessenberg matrices -- Part 7. Algorithms for qr iterations and for reduction to Hessenberg form -- 29. The QR iteration method for eigenvalues -- 30. The reduction to Hessenberg form -- 31. The implicit QR iteration method for eigenvalues of upper Hessenberg matrices -- Part 8. QR iterations for companion matrices -- 32. Companion and unitary matrices -- 33. Explicit methods -- 34. Implicit methods with compression -- 35. The factorization based implicit method -- 36. Implicit algorithms based on the QR representation -- Bibliography.  . 
520 |a This two-volume work presents a systematic theoretical and computational study of several types of generalizations of separable matrices. The primary focus is on fast algorithms (many of linear complexity) for matrices in semiseparable, quasiseparable, band and companion form. The work examines algorithms of multiplication, inversion and description of eigenstructure and includes a wealth of illustrative examples throughout the different chapters. The second volume, consisting of four parts, addresses the eigenvalue problem for matrices with quasiseparable structure and applications to the polynomial root finding problem. In the first part the properties of the characteristic polynomials of principal leading submatrices, the structure of eigenspaces and the basic methods for computing eigenvalues are studied in detail for matrices with quasiseparable representation of the first order. The second part is devoted to the divide and conquer method, with the main algorithms also being derived for matrices with quasiseparable representation of order one. The QR iteration method for some classes of matrices with quasiseparable representations of any order is studied in the third part. This method is then used in the last part in order to provide a fast solver for the polynomial root finding problem. The work is based mostly on results obtained by the authors and their coauthors. Due to its many significant applications and accessible style, the text will be a valuable resource for engineers, scientists, numerical analysts, computer scientists and mathematicians alike. 
650 0 |a mathematics.  |9 566183 
650 0 |a Matrix theory.  |9 303236 
650 0 |a Numerical analysis.  |9 566288 
650 1 4 |a Mathematics.  |9 566184 
650 2 4 |a Linear and Multilinear Algebras, Matrix Theory.  |9 303237 
650 2 4 |a Numerical Analysis.  |9 566289 
700 1 |a Gohberg, Israel.  |e author.  |9 331543 
700 1 |a Haimovici, Iulian.  |e author.  |9 447741 
710 2 |a SpringerLink (Online service)  |9 143950 
773 0 |t Springer eBooks 
830 0 |a Operator Theory: Advances and Applications,  |9 566535 
856 4 0 |u http://dx.doi.org/10.1007/978-3-0348-0612-1 
856 |y Перейти в каталог НБ ТГУ  |u https://koha.lib.tsu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=399764 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649) 
999 |c 399764  |d 399764