Algorithms for Sparsity-Constrained Optimization
This thesis demonstrates techniques that provide faster and more accurate solutions to a variety of problems in machine learning and signal processing. The author proposes a"greedy" algorithm, deriving sparse solutions with guarantees of optimality. The use of this algorithm removes many o...
Опубликовано в: : | Springer eBooks |
---|---|
Главный автор: | |
Соавтор: | |
Формат: | Электронная книга |
Язык: | English |
Публикация: |
Cham :
Springer International Publishing : Imprint: Springer,
2014.
|
Серии: | Springer Theses, Recognizing Outstanding Ph.D. Research,
|
Предметы: | |
Online-ссылка: | http://dx.doi.org/10.1007/978-3-319-01881-2 Перейти в каталог НБ ТГУ |
LEADER | 02618nam a22005295i 4500 | ||
---|---|---|---|
001 | vtls000542166 | ||
003 | RU-ToGU | ||
005 | 20210922082301.0 | ||
007 | cr nn 008mamaa | ||
008 | 160915s2014 gw | s |||| 0|eng d | ||
020 | |a 9783319018812 |9 978-3-319-01881-2 | ||
024 | 7 | |a 10.1007/978-3-319-01881-2 |2 doi | |
035 | |a to000542166 | ||
039 | 9 | |y 201609152149 |z Александр Эльверович Гилязов | |
040 | |a Springer |c Springer |d RU-ToGU | ||
050 | 4 | |a TK5102.9 | |
050 | 4 | |a TA1637-1638 | |
050 | 4 | |a TK7882.S65 | |
072 | 7 | |a TTBM |2 bicssc | |
072 | 7 | |a UYS |2 bicssc | |
072 | 7 | |a TEC008000 |2 bisacsh | |
072 | 7 | |a COM073000 |2 bisacsh | |
082 | 0 | 4 | |a 621.382 |2 23 |
100 | 1 | |a Bahmani, Sohail. |e author. |9 447930 | |
245 | 1 | 0 | |a Algorithms for Sparsity-Constrained Optimization |h electronic resource |c by Sohail Bahmani. |
260 | |a Cham : |b Springer International Publishing : |b Imprint: Springer, |c 2014. |9 742221 | ||
300 | |a XXI, 107 p. 13 illus., 12 illus. in color. |b online resource. | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
490 | 1 | |a Springer Theses, Recognizing Outstanding Ph.D. Research, |x 2190-5053 ; |v 261 | |
505 | 0 | |a Introduction -- Preliminaries -- Sparsity-Constrained Optimization -- Background -- 1-bit Compressed Sensing -- Estimation Under Model-Based Sparsity -- Projected Gradient Descent for `p-constrained Least Squares -- Conclusion and Future Work. | |
520 | |a This thesis demonstrates techniques that provide faster and more accurate solutions to a variety of problems in machine learning and signal processing. The author proposes a"greedy" algorithm, deriving sparse solutions with guarantees of optimality. The use of this algorithm removes many of the inaccuracies that occurred with the use of previous models. | ||
650 | 0 | |a engineering. |9 224332 | |
650 | 0 | |a Computer vision. |9 274100 | |
650 | 1 | 4 | |a Engineering. |9 224332 |
650 | 2 | 4 | |a Signal, Image and Speech Processing. |9 274103 |
650 | 2 | 4 | |a Mathematical Applications in Computer Science. |9 412135 |
650 | 2 | 4 | |a Image Processing and Computer Vision. |9 303601 |
710 | 2 | |a SpringerLink (Online service) |9 143950 | |
773 | 0 | |t Springer eBooks | |
830 | 0 | |a Springer Theses, Recognizing Outstanding Ph.D. Research, |9 567110 | |
856 | 4 | 0 | |u http://dx.doi.org/10.1007/978-3-319-01881-2 |
856 | |y Перейти в каталог НБ ТГУ |u https://koha.lib.tsu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=399877 | ||
912 | |a ZDB-2-ENG | ||
950 | |a Engineering (Springer-11647) | ||
999 | |c 399877 |d 399877 |