Algorithms for Sparsity-Constrained Optimization

This thesis demonstrates techniques that provide faster and more accurate solutions to a variety of problems in machine learning and signal processing. The author proposes a"greedy" algorithm, deriving sparse solutions with guarantees of optimality. The use of this algorithm removes many o...

Полное описание

Библиографическая информация
Опубликовано в: :Springer eBooks
Главный автор: Bahmani, Sohail (Автор)
Соавтор: SpringerLink (Online service)
Формат: Электронная книга
Язык:English
Публикация: Cham : Springer International Publishing : Imprint: Springer, 2014.
Серии:Springer Theses, Recognizing Outstanding Ph.D. Research,
Предметы:
Online-ссылка:http://dx.doi.org/10.1007/978-3-319-01881-2
Перейти в каталог НБ ТГУ
LEADER 02618nam a22005295i 4500
001 vtls000542166
003 RU-ToGU
005 20210922082301.0
007 cr nn 008mamaa
008 160915s2014 gw | s |||| 0|eng d
020 |a 9783319018812  |9 978-3-319-01881-2 
024 7 |a 10.1007/978-3-319-01881-2  |2 doi 
035 |a to000542166 
039 9 |y 201609152149  |z Александр Эльверович Гилязов 
040 |a Springer  |c Springer  |d RU-ToGU 
050 4 |a TK5102.9 
050 4 |a TA1637-1638 
050 4 |a TK7882.S65 
072 7 |a TTBM  |2 bicssc 
072 7 |a UYS  |2 bicssc 
072 7 |a TEC008000  |2 bisacsh 
072 7 |a COM073000  |2 bisacsh 
082 0 4 |a 621.382  |2 23 
100 1 |a Bahmani, Sohail.  |e author.  |9 447930 
245 1 0 |a Algorithms for Sparsity-Constrained Optimization  |h electronic resource  |c by Sohail Bahmani. 
260 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2014.  |9 742221 
300 |a XXI, 107 p. 13 illus., 12 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Springer Theses, Recognizing Outstanding Ph.D. Research,  |x 2190-5053 ;  |v 261 
505 0 |a Introduction -- Preliminaries -- Sparsity-Constrained Optimization -- Background -- 1-bit Compressed Sensing -- Estimation Under Model-Based Sparsity -- Projected Gradient Descent for `p-constrained Least Squares -- Conclusion and Future Work. 
520 |a This thesis demonstrates techniques that provide faster and more accurate solutions to a variety of problems in machine learning and signal processing. The author proposes a"greedy" algorithm, deriving sparse solutions with guarantees of optimality. The use of this algorithm removes many of the inaccuracies that occurred with the use of previous models. 
650 0 |a engineering.  |9 224332 
650 0 |a Computer vision.  |9 274100 
650 1 4 |a Engineering.  |9 224332 
650 2 4 |a Signal, Image and Speech Processing.  |9 274103 
650 2 4 |a Mathematical Applications in Computer Science.  |9 412135 
650 2 4 |a Image Processing and Computer Vision.  |9 303601 
710 2 |a SpringerLink (Online service)  |9 143950 
773 0 |t Springer eBooks 
830 0 |a Springer Theses, Recognizing Outstanding Ph.D. Research,  |9 567110 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-01881-2 
856 |y Перейти в каталог НБ ТГУ  |u https://koha.lib.tsu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=399877 
912 |a ZDB-2-ENG 
950 |a Engineering (Springer-11647) 
999 |c 399877  |d 399877