Statistical Theory and Inference

This text is for  a one semester graduate course in statistical theory and covers minimal and complete sufficient statistics, maximum likelihood estimators, method of moments, bias and mean square error, uniform minimum variance estimators and the Cramer-Rao lower bound, an introduction to large sam...

Full description

Bibliographic Details
Published in:Springer eBooks
Main Author: Olive, David J. (Author)
Corporate Author: SpringerLink (Online service)
Format: eBook
Language:English
Published: Cham : Springer International Publishing : Imprint: Springer, 2014.
Subjects:
Online Access:http://dx.doi.org/10.1007/978-3-319-04972-4
Перейти в каталог НБ ТГУ
LEADER 02975nam a22004695i 4500
001 vtls000542866
003 RU-ToGU
005 20210922082435.0
007 cr nn 008mamaa
008 160915s2014 gw | s |||| 0|eng d
020 |a 9783319049724  |9 978-3-319-04972-4 
024 7 |a 10.1007/978-3-319-04972-4  |2 doi 
035 |a to000542866 
039 9 |y 201609152158  |z Александр Эльверович Гилязов 
040 |a Springer  |c Springer  |d RU-ToGU 
050 4 |a QA276-280 
072 7 |a PBT  |2 bicssc 
072 7 |a MAT029000  |2 bisacsh 
082 0 4 |a 519.5  |2 23 
100 1 |a Olive, David J.  |e author.  |9 448827 
245 1 0 |a Statistical Theory and Inference  |h electronic resource  |c by David J. Olive. 
260 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2014.  |9 742221 
300 |a XII, 434 p. 8 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
505 0 |a Probability and Expectations.- Multivariate Distributions -- Exponential Families.- Sufficient Statistics.- Point Estimation I.-Point Estimation II -- Testing Statistical Hypotheses.- Large Sample Theory.- Confidence Intervals.- Some Useful Distributions -- Bayesian Methods -- Stuff for Students. 
520 |a This text is for  a one semester graduate course in statistical theory and covers minimal and complete sufficient statistics, maximum likelihood estimators, method of moments, bias and mean square error, uniform minimum variance estimators and the Cramer-Rao lower bound, an introduction to large sample theory, likelihood ratio tests and uniformly most powerful  tests and the Neyman Pearson Lemma. A major goal of this text is to make these topics much more accessible to students by using the theory of exponential families. Exponential families, indicator functions and the support of the distribution are used throughout the text to simplify the theory. More than 50 ``brand name" distributions are used to illustrate the theory with many examples of exponential families, maximum likelihood estimators and uniformly minimum variance unbiased estimators. There are many homework problems with over 30 pages of solutions. 
650 0 |a Statistics.  |9 124796 
650 0 |a Distribution (Probability theory).  |9 303731 
650 0 |a Mathematical statistics.  |9 566264 
650 1 4 |a Statistics.  |9 124796 
650 2 4 |a Statistical Theory and Methods.  |9 303276 
650 2 4 |a Probability Theory and Stochastic Processes.  |9 303734 
650 2 4 |a Statistics, general.  |9 305490 
710 2 |a SpringerLink (Online service)  |9 143950 
773 0 |t Springer eBooks 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-04972-4 
856 |y Перейти в каталог НБ ТГУ  |u https://koha.lib.tsu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=400369 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649) 
999 |c 400369  |d 400369