Brownian Motion and its Applications to Mathematical Analysis École d'Été de Probabilités de Saint-Flour XLIII - 2013 /

These lecture notes provide an introduction to the applications of Brownian motion to analysis and, more generally, connections between Brownian motion and analysis. Brownian motion is a well-suited model for a wide range of real random phenomena, from chaotic oscillations of microscopic objects, su...

Full description

Bibliographic Details
Published in:Springer eBooks
Main Author: Burdzy, Krzysztof (Author)
Corporate Author: SpringerLink (Online service)
Format: eBook
Language:English
Published: Cham : Springer International Publishing : Imprint: Springer, 2014.
Series:Lecture Notes in Mathematics,
Subjects:
Online Access:http://dx.doi.org/10.1007/978-3-319-04394-4
Перейти в каталог НБ ТГУ
LEADER 03310nam a22005415i 4500
001 vtls000542694
003 RU-ToGU
005 20210922082508.0
007 cr nn 008mamaa
008 160915s2014 gw | s |||| 0|eng d
020 |a 9783319043944  |9 978-3-319-04394-4 
024 7 |a 10.1007/978-3-319-04394-4  |2 doi 
035 |a to000542694 
039 9 |y 201609152155  |z Александр Эльверович Гилязов 
040 |a Springer  |c Springer  |d RU-ToGU 
050 4 |a QA273.A1-274.9 
050 4 |a QA274-274.9 
072 7 |a PBT  |2 bicssc 
072 7 |a PBWL  |2 bicssc 
072 7 |a MAT029000  |2 bisacsh 
082 0 4 |a 519.2  |2 23 
100 1 |a Burdzy, Krzysztof.  |e author.  |9 449111 
245 1 0 |a Brownian Motion and its Applications to Mathematical Analysis  |h electronic resource  |b École d'Été de Probabilités de Saint-Flour XLIII - 2013 /  |c by Krzysztof Burdzy. 
260 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2014.  |9 742221 
300 |a XII, 137 p. 16 illus., 4 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Lecture Notes in Mathematics,  |x 0075-8434 ;  |v 2106 
505 0 |a 1. Brownian motion -- 2. Probabilistic proofs of classical theorems -- 3. Overview of the "hot spots" problem -- 4. Neumann eigenfunctions and eigenvalues -- 5. Synchronous and mirror couplings -- 6. Parabolic boundary Harnack principle -- 7. Scaling coupling -- 8. Nodal lines -- 9. Neumann heat kernel monotonicity -- 10. Reflected Brownian motion in time dependent domains. 
520 |a These lecture notes provide an introduction to the applications of Brownian motion to analysis and, more generally, connections between Brownian motion and analysis. Brownian motion is a well-suited model for a wide range of real random phenomena, from chaotic oscillations of microscopic objects, such as flower pollen in water, to stock market fluctuations. It is also a purely abstract mathematical tool which can be used to prove theorems in "deterministic" fields of mathematics. The notes include a brief review of Brownian motion and a section on probabilistic proofs of classical theorems in analysis. The bulk of the notes are devoted to recent (post-1990) applications of stochastic analysis to Neumann eigenfunctions, Neumann heat kernel and the heat equation in time-dependent domains. 
650 0 |a mathematics.  |9 566183 
650 0 |a Differential equations, partial.  |9 303599 
650 0 |a Potential theory (Mathematics).  |9 307769 
650 0 |a Distribution (Probability theory).  |9 303731 
650 1 4 |a Mathematics.  |9 566184 
650 2 4 |a Probability Theory and Stochastic Processes.  |9 303734 
650 2 4 |a Partial Differential Equations.  |9 303602 
650 2 4 |a Potential Theory.  |9 307770 
710 2 |a SpringerLink (Online service)  |9 143950 
773 0 |t Springer eBooks 
830 0 |a Lecture Notes in Mathematics,  |9 315276 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-04394-4 
856 |y Перейти в каталог НБ ТГУ  |u https://koha.lib.tsu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=400547 
912 |a ZDB-2-SMA 
912 |a ZDB-2-LNM 
950 |a Mathematics and Statistics (Springer-11649) 
999 |c 400547  |d 400547