A Brief Introduction to Continuous Evolutionary Optimization

Practical optimization problems are often hard to solve, in particular when they are black boxes and no further information about the problem is available except via function evaluations. This work introduces a collection of heuristics and algorithms for black box optimization with evolutionary algo...

Full description

Bibliographic Details
Published in:Springer eBooks
Main Author: Kramer, Oliver (Author)
Corporate Author: SpringerLink (Online service)
Format: eBook
Language:English
Published: Cham : Springer International Publishing : Imprint: Springer, 2014.
Series:SpringerBriefs in Applied Sciences and Technology,
Subjects:
Online Access:http://dx.doi.org/10.1007/978-3-319-03422-5
LEADER 02929nam a22004455i 4500
001 vtls000542460
003 RU-ToGU
005 20210922082522.0
007 cr nn 008mamaa
008 160915s2014 gw | s |||| 0|eng d
020 |a 9783319034225 
024 7 |a 10.1007/978-3-319-03422-5  |2 doi 
035 |a to000542460 
040 |a Springer  |c Springer  |d RU-ToGU 
050 4 |a Q342 
072 7 |a UYQ  |2 bicssc 
072 7 |a COM004000  |2 bisacsh 
082 0 4 |a 006.3  |2 23 
100 1 |a Kramer, Oliver.  |e author. 
245 1 2 |a A Brief Introduction to Continuous Evolutionary Optimization  |h electronic resource  |c by Oliver Kramer. 
260 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2014. 
300 |a XI, 94 p. 29 illus., 24 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a SpringerBriefs in Applied Sciences and Technology,  |x 2191-530X 
505 0 |a Part I Foundations -- Part II Advanced Optimization -- Part III Learning -- Part IV Appendix. 
520 |a Practical optimization problems are often hard to solve, in particular when they are black boxes and no further information about the problem is available except via function evaluations. This work introduces a collection of heuristics and algorithms for black box optimization with evolutionary algorithms in continuous solution spaces. The book gives an introduction to evolution strategies and parameter control. Heuristic extensions are presented that allow optimization in constrained, multimodal, and multi-objective solution spaces. An adaptive penalty function is introduced for constrained optimization. Meta-models reduce the number of fitness and constraint function calls in expensive optimization problems. The hybridization of evolution strategies with local search allows fast optimization in solution spaces with many local optima. A selection operator based on reference lines in objective space is introduced to optimize multiple conflictive objectives. Evolutionary search is employed for learning kernel parameters of the Nadaraya-Watson estimator, and a swarm-based iterative approach is presented for optimizing latent points in dimensionality reduction problems. Experiments on typical benchmark problems as well as numerous figures and diagrams illustrate the behavior of the introduced concepts and methods. 
650 0 |a engineering. 
650 0 |a Artificial intelligence. 
650 1 4 |a Engineering. 
650 2 4 |a Computational Intelligence. 
650 2 4 |a Artificial Intelligence (incl. Robotics). 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
830 0 |a SpringerBriefs in Applied Sciences and Technology, 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-03422-5 
912 |a ZDB-2-ENG 
950 |a Engineering (Springer-11647) 
999 |c 400620  |d 400620