Differential Geometry Basic Notions and Physical Examples /

Differential Geometry offers a concise introduction to some basic notions of modern differential geometry and their applications to solid mechanics and physics. Concepts such as manifolds, groups, fibre bundles and groupoids are first introduced within a purely topological framework. They are shown...

Полное описание

Библиографическая информация
Опубликовано в: :Springer eBooks
Главный автор: Epstein, Marcelo (Автор)
Соавтор: SpringerLink (Online service)
Формат: Электронная книга
Язык:English
Публикация: Cham : Springer International Publishing : Imprint: Springer, 2014.
Серии:Mathematical Engineering,
Предметы:
Online-ссылка:http://dx.doi.org/10.1007/978-3-319-06920-3
Перейти в каталог НБ ТГУ
LEADER 03057nam a22005295i 4500
001 vtls000543381
003 RU-ToGU
005 20210922082557.0
007 cr nn 008mamaa
008 160915s2014 gw | s |||| 0|eng d
020 |a 9783319069203  |9 978-3-319-06920-3 
024 7 |a 10.1007/978-3-319-06920-3  |2 doi 
035 |a to000543381 
039 9 |y 201609152204  |z Александр Эльверович Гилязов 
040 |a Springer  |c Springer  |d RU-ToGU 
050 4 |a QA641-670 
072 7 |a PBMP  |2 bicssc 
072 7 |a MAT012030  |2 bisacsh 
082 0 4 |a 516.36  |2 23 
100 1 |a Epstein, Marcelo.  |e author.  |9 328408 
245 1 0 |a Differential Geometry  |h electronic resource  |b Basic Notions and Physical Examples /  |c by Marcelo Epstein. 
260 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2014.  |9 742221 
300 |a XI, 139 p. 26 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Mathematical Engineering,  |x 2192-4732 
505 0 |a Topological constructs -- Physical illustrations -- Differential constructs -- Physical illustrations. 
520 |a Differential Geometry offers a concise introduction to some basic notions of modern differential geometry and their applications to solid mechanics and physics. Concepts such as manifolds, groups, fibre bundles and groupoids are first introduced within a purely topological framework. They are shown to be relevant to the description of space-time, configuration spaces of mechanical systems, symmetries in general, microstructure and local and distant symmetries of the constitutive response of continuous media. Once these ideas have been grasped at the topological level, the differential structure needed for the description of physical fields is introduced in terms of differentiable manifolds and principal frame bundles. These mathematical concepts are then illustrated with examples from continuum kinematics, Lagrangian and Hamiltonian mechanics, Cauchy fluxes and dislocation theory. This book will be useful for researchers and graduate students in science and engineering. 
650 0 |a mathematics.  |9 566183 
650 0 |a Global differential geometry.  |9 566343 
650 0 |a Mathematical physics.  |9 296775 
650 0 |a mechanics.  |9 566235 
650 0 |a Materials.  |9 128387 
650 1 4 |a Mathematics.  |9 566184 
650 2 4 |a Differential Geometry.  |9 566344 
650 2 4 |a Continuum Mechanics and Mechanics of Materials.  |9 303579 
650 2 4 |a Mechanics.  |9 566236 
650 2 4 |a Mathematical Methods in Physics.  |9 296778 
710 2 |a SpringerLink (Online service)  |9 143950 
773 0 |t Springer eBooks 
830 0 |a Mathematical Engineering,  |9 448220 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-06920-3 
856 |y Перейти в каталог НБ ТГУ  |u https://koha.lib.tsu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=400807 
912 |a ZDB-2-ENG 
950 |a Engineering (Springer-11647) 
999 |c 400807  |d 400807