Time-Varying Vector Fields and Their Flows
This short book provides a comprehensive and unified treatment of time-varying vector fields under a variety of regularity hypotheses, namely finitely differentiable, Lipschitz, smooth, holomorphic, and real analytic. The presentation of this material in the real analytic setting is new, as is the m...
Published in: | Springer eBooks |
---|---|
Main Authors: | , |
Corporate Author: | |
Format: | eBook |
Language: | English |
Published: |
Cham :
Springer International Publishing : Imprint: Springer,
2014.
|
Series: | SpringerBriefs in Mathematics,
|
Subjects: | |
Online Access: | http://dx.doi.org/10.1007/978-3-319-10139-2 Перейти в каталог НБ ТГУ |
Summary: | This short book provides a comprehensive and unified treatment of time-varying vector fields under a variety of regularity hypotheses, namely finitely differentiable, Lipschitz, smooth, holomorphic, and real analytic. The presentation of this material in the real analytic setting is new, as is the manner in which the various hypotheses are unified using functional analysis. Indeed, a major contribution of the book is the coherent development of locally convex topologies for the space of real analytic sections of a vector bundle, and the development of this in a manner that relates easily to classically known topologies in, for example, the finitely differentiable and smooth cases. The tools used in this development will be of use to researchers in the area of geometric functional analysis. |
---|---|
Physical Description: | VIII, 119 p. 9 illus. online resource. |
ISBN: | 9783319101392 |
ISSN: | 2191-8198 |