Computer Vision - ECCV 2014 13th European Conference, Zurich, Switzerland, September 6-12, 2014, Proceedings, Part V /

The seven-volume set comprising LNCS volumes 8689-8695 constitutes the refereed proceedings of the 13th European Conference on Computer Vision, ECCV 2014, held in Zurich, Switzerland, in September 2014. The 363 revised papers presented were carefully reviewed and selected from 1444 submissions. The...

Full description

Bibliographic Details
Published in:Springer eBooks
Corporate Author: SpringerLink (Online service)
Other Authors: Fleet, David (Editor), Pajdla, Tomas (Editor), Schiele, Bernt (Editor), Tuytelaars, Tinne (Editor)
Format: eBook
Language:English
Published: Cham : Springer International Publishing : Imprint: Springer, 2014.
Series:Lecture Notes in Computer Science,
Subjects:
Online Access:http://dx.doi.org/10.1007/978-3-319-10602-1
Перейти в каталог НБ ТГУ
LEADER 06375nam a22006255i 4500
001 vtls000543992
003 RU-ToGU
005 20210922082909.0
007 cr nn 008mamaa
008 160915s2014 gw | s |||| 0|eng d
020 |a 9783319106021  |9 978-3-319-10602-1 
024 7 |a 10.1007/978-3-319-10602-1  |2 doi 
035 |a to000543992 
039 9 |y 201609152213  |z Александр Эльверович Гилязов 
040 |a Springer  |c Springer  |d RU-ToGU 
050 4 |a TA1637-1638 
050 4 |a TA1637-1638 
072 7 |a UYT  |2 bicssc 
072 7 |a UYQV  |2 bicssc 
072 7 |a COM012000  |2 bisacsh 
072 7 |a COM016000  |2 bisacsh 
082 0 4 |a 006.6  |2 23 
082 0 4 |a 006.37  |2 23 
245 1 0 |a Computer Vision - ECCV 2014  |h electronic resource  |b 13th European Conference, Zurich, Switzerland, September 6-12, 2014, Proceedings, Part V /  |c edited by David Fleet, Tomas Pajdla, Bernt Schiele, Tinne Tuytelaars. 
260 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2014.  |9 742221 
300 |a XXVIII, 853 p. 379 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Lecture Notes in Computer Science,  |x 0302-9743 ;  |v 8693 
505 0 |a Video Registration to SfM Models -- Soft Cost Aggregation with Multi-resolution Fusion -- Inverse Kernels for Fast Spatial Deconvolution -- Deep Network Cascade for Image Super-resolution -- Spectral Edge Image Fusion: Theory and Applications -- Spatio-chromatic Opponent Features -- Modeling Perceptual Color Differences by Local Metric Learning -- Online Graph-Based Tracking -- Fast Visual Tracking via Dense Spatio-temporal Context Learning -- Extended Lucas-Kanade Tracking -- Appearances Can Be Deceiving: Learning Visual Tracking from Few Trajectory Annotations -- Generalized Background Subtraction Using Superpixels with Label Integrated Motion Estimation -- Spectra Estimation of Fluorescent and Reflective Scenes by Using Ordinary Illuminants -- Interreflection Removal Using Fluorescence -- Intrinsic Face Image Decomposition with Human Face Priors -- Recovering Scene Geometry under Wavy Fluid via Distortion and Defocus Analysis -- Human Detection Using Learned Part Alphabet and Pose Dictionary -- SPADE: Scalar Product Accelerator by Integer Decomposition for Object Detection -- Detecting Snap Points in Egocentric Video with a Web Photo Prior -- Towards Unified Object Detection and Semantic Segmentation -- Foreground Consistent Human Pose Estimation Using Branch and Bound -- Human Pose Estimation with Fields of Parts.-Unsupervised Video Adaptation for Parsing Human Motion -- Training Object Class Detectors from Eye Tracking Data -- Symmetric Objects -- Edge Boxes: Locating Object Proposals from Edges -- Training Deformable Object Models for Human Detection Based on Alignment and Clustering -- Predicting Actions from Static Scenes -- Exploiting Privileged Information from Web Data for Image Categorization -- Multi-modal Unsupervised Feature Learning for RGB-D Scene Labeling -- Discriminatively Trained Dense Surface Normal Estimation -- Numerical Inversion of SRNFs for Efficient Elastic Shape Analysis of Star-Shaped Objects Classification -- Learning Where to Classify in Multi-view Semantic Segmentation -- Semantics: A Medium-Level Model for Real-Time Semantic Scene Understanding -- Sparse Dictionaries for Semantic Segmentation -- Video Action Detection with Relational Dynamic-Poselets -- Action Recognition with Stacked Fisher Vectors -- A Discriminative Model with Multiple Temporal Scales for Action Prediction -- Seeing is Worse than Believing: Reading People's Minds Better than Computer-Vision Methods Recognize Actions -- Weakly Supervised Action Labeling in Videos under Ordering Constraints -- Active Random Forests: An Application to Autonomous Unfolding of Clothes -- Model-Free Segmentation and Grasp Selection of Unknown Stacked Objects -- Convexity Shape Prior for Segmentation -- Pseudo-bound Optimization for Binary Energies -- A Closer Look at Context: From Coxels to the Contextual Emergence of Object Saliency -- Geodesic Object Proposals -- Microsoft COCO: Common Objects in Context -- Efficient Joint Segmentation, Occlusion Labeling, Stereo and Flow Estimation -- Robust Bundle Adjustment Revisited -- Accurate Intrinsic Calibration of Depth Camera with Cuboids -- Statistical Pose Averaging with Non-isotropic and Incomplete Relative Measurements -- A Pot of Gold: Rainbows as a Calibration Cue -- Let There Be Color! Large-Scale Texturing of 3D Reconstructions. 
520 |a The seven-volume set comprising LNCS volumes 8689-8695 constitutes the refereed proceedings of the 13th European Conference on Computer Vision, ECCV 2014, held in Zurich, Switzerland, in September 2014. The 363 revised papers presented were carefully reviewed and selected from 1444 submissions. The papers are organized in topical sections on tracking and activity recognition; recognition; learning and inference; structure from motion and feature matching; computational photography and low-level vision; vision; segmentation and saliency; context and 3D scenes; motion and 3D scene analysis; and poster sessions. 
650 0 |a Computer Science.  |9 155490 
650 0 |a Artificial intelligence.  |9 274099 
650 0 |a Computer graphics.  |9 281357 
650 0 |a Computer vision.  |9 274100 
650 0 |a Optical pattern recognition.  |9 304126 
650 1 4 |a Computer Science.  |9 155490 
650 2 4 |a Image Processing and Computer Vision.  |9 303601 
650 2 4 |a Pattern Recognition.  |9 304129 
650 2 4 |a Artificial Intelligence (incl. Robotics).  |9 274102 
650 2 4 |a Computer Graphics.  |9 281357 
700 1 |a Fleet, David.  |e editor.  |9 567384 
700 1 |a Pajdla, Tomas.  |e editor.  |9 567385 
700 1 |a Schiele, Bernt.  |e editor.  |9 324133 
700 1 |a Tuytelaars, Tinne.  |e editor.  |9 567386 
710 2 |a SpringerLink (Online service)  |9 143950 
773 0 |t Springer eBooks 
830 0 |a Lecture Notes in Computer Science,  |9 279505 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-10602-1 
856 |y Перейти в каталог НБ ТГУ  |u https://koha.lib.tsu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=401827 
912 |a ZDB-2-SCS 
912 |a ZDB-2-LNC 
950 |a Computer Science (Springer-11645) 
999 |c 401827  |d 401827