Uncertainty Modeling for Data Mining A Label Semantics Approach /
Machine learning and data mining are inseparably connected with uncertainty. The observable data for learning is usually imprecise, incomplete or noisy. Uncertainty Modeling for Data Mining: A Label Semantics Approach introduces 'label semantics', a fuzzy-logic-based theory for modeling un...
Published in: | Springer eBooks |
---|---|
Main Authors: | , |
Corporate Author: | |
Format: | eBook |
Language: | English |
Published: |
Berlin, Heidelberg :
Springer Berlin Heidelberg : Imprint: Springer,
2014.
|
Series: | Advanced Topics in Science and Technology in China,
|
Subjects: | |
Online Access: | http://dx.doi.org/10.1007/978-3-642-41251-6 Перейти в каталог НБ ТГУ |
LEADER | 03054nam a22005295i 4500 | ||
---|---|---|---|
001 | vtls000544813 | ||
003 | RU-ToGU | ||
005 | 20210922083045.0 | ||
007 | cr nn 008mamaa | ||
008 | 160915s2014 gw | s |||| 0|eng d | ||
020 | |a 9783642412516 |9 978-3-642-41251-6 | ||
024 | 7 | |a 10.1007/978-3-642-41251-6 |2 doi | |
035 | |a to000544813 | ||
039 | 9 | |y 201609152225 |z Александр Эльверович Гилязов | |
040 | |a Springer |c Springer |d RU-ToGU | ||
050 | 4 | |a QA76.9.D343 | |
072 | 7 | |a UNF |2 bicssc | |
072 | 7 | |a UYQE |2 bicssc | |
072 | 7 | |a COM021030 |2 bisacsh | |
082 | 0 | 4 | |a 006.312 |2 23 |
100 | 1 | |a Qin, Zengchang. |e author. |9 416988 | |
245 | 1 | 0 | |a Uncertainty Modeling for Data Mining |h electronic resource |b A Label Semantics Approach / |c by Zengchang Qin, Yongchuan Tang. |
260 | |a Berlin, Heidelberg : |b Springer Berlin Heidelberg : |b Imprint: Springer, |c 2014. |9 742158 | ||
300 | |a XIX, 291 p. |b online resource. | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
490 | 1 | |a Advanced Topics in Science and Technology in China, |x 1995-6819 | |
520 | |a Machine learning and data mining are inseparably connected with uncertainty. The observable data for learning is usually imprecise, incomplete or noisy. Uncertainty Modeling for Data Mining: A Label Semantics Approach introduces 'label semantics', a fuzzy-logic-based theory for modeling uncertainty. Several new data mining algorithms based on label semantics are proposed and tested on real-world datasets. A prototype interpretation of label semantics and new prototype-based data mining algorithms are also discussed. This book offers a valuable resource for postgraduates, researchers and other professionals in the fields of data mining, fuzzy computing and uncertainty reasoning. Zengchang Qin is an associate professor at the School of Automation Science and Electrical Engineering, Beihang University, China; Yongchuan Tang is an associate professor at the College of Computer Science, Zhejiang University, China. | ||
650 | 0 | |a Computer Science. |9 155490 | |
650 | 0 | |a Information systems. |9 303226 | |
650 | 0 | |a Data mining. |9 306371 | |
650 | 0 | |a Artificial intelligence. |9 274099 | |
650 | 1 | 4 | |a Computer Science. |9 155490 |
650 | 2 | 4 | |a Data Mining and Knowledge Discovery. |9 306372 |
650 | 2 | 4 | |a Artificial Intelligence (incl. Robotics). |9 274102 |
650 | 2 | 4 | |a Information Systems and Communication Service. |9 304271 |
650 | 2 | 4 | |a Math Applications in Computer Science. |9 303284 |
700 | 1 | |a Tang, Yongchuan. |e author. |9 452279 | |
710 | 2 | |a SpringerLink (Online service) |9 143950 | |
773 | 0 | |t Springer eBooks | |
830 | 0 | |a Advanced Topics in Science and Technology in China, |9 566529 | |
856 | 4 | 0 | |u http://dx.doi.org/10.1007/978-3-642-41251-6 |
856 | |y Перейти в каталог НБ ТГУ |u https://koha.lib.tsu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=402333 | ||
912 | |a ZDB-2-SCS | ||
950 | |a Computer Science (Springer-11645) | ||
999 | |c 402333 |d 402333 |