Uncertainty Modeling for Data Mining A Label Semantics Approach /

Machine learning and data mining are inseparably connected with uncertainty. The observable data for learning is usually imprecise, incomplete or noisy. Uncertainty Modeling for Data Mining: A Label Semantics Approach introduces 'label semantics', a fuzzy-logic-based theory for modeling un...

Full description

Bibliographic Details
Published in:Springer eBooks
Main Authors: Qin, Zengchang (Author), Tang, Yongchuan (Author)
Corporate Author: SpringerLink (Online service)
Format: eBook
Language:English
Published: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2014.
Series:Advanced Topics in Science and Technology in China,
Subjects:
Online Access:http://dx.doi.org/10.1007/978-3-642-41251-6
Перейти в каталог НБ ТГУ
LEADER 03054nam a22005295i 4500
001 vtls000544813
003 RU-ToGU
005 20210922083045.0
007 cr nn 008mamaa
008 160915s2014 gw | s |||| 0|eng d
020 |a 9783642412516  |9 978-3-642-41251-6 
024 7 |a 10.1007/978-3-642-41251-6  |2 doi 
035 |a to000544813 
039 9 |y 201609152225  |z Александр Эльверович Гилязов 
040 |a Springer  |c Springer  |d RU-ToGU 
050 4 |a QA76.9.D343 
072 7 |a UNF  |2 bicssc 
072 7 |a UYQE  |2 bicssc 
072 7 |a COM021030  |2 bisacsh 
082 0 4 |a 006.312  |2 23 
100 1 |a Qin, Zengchang.  |e author.  |9 416988 
245 1 0 |a Uncertainty Modeling for Data Mining  |h electronic resource  |b A Label Semantics Approach /  |c by Zengchang Qin, Yongchuan Tang. 
260 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2014.  |9 742158 
300 |a XIX, 291 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Advanced Topics in Science and Technology in China,  |x 1995-6819 
520 |a Machine learning and data mining are inseparably connected with uncertainty. The observable data for learning is usually imprecise, incomplete or noisy. Uncertainty Modeling for Data Mining: A Label Semantics Approach introduces 'label semantics', a fuzzy-logic-based theory for modeling uncertainty. Several new data mining algorithms based on label semantics are proposed and tested on real-world datasets. A prototype interpretation of label semantics and new prototype-based data mining algorithms are also discussed. This book offers a valuable resource for postgraduates, researchers and other professionals in the fields of data mining, fuzzy computing and uncertainty reasoning.   Zengchang Qin is an associate professor at the School of Automation Science and Electrical Engineering, Beihang University, China; Yongchuan Tang is an associate professor at the College of Computer Science, Zhejiang University, China. 
650 0 |a Computer Science.  |9 155490 
650 0 |a Information systems.  |9 303226 
650 0 |a Data mining.  |9 306371 
650 0 |a Artificial intelligence.  |9 274099 
650 1 4 |a Computer Science.  |9 155490 
650 2 4 |a Data Mining and Knowledge Discovery.  |9 306372 
650 2 4 |a Artificial Intelligence (incl. Robotics).  |9 274102 
650 2 4 |a Information Systems and Communication Service.  |9 304271 
650 2 4 |a Math Applications in Computer Science.  |9 303284 
700 1 |a Tang, Yongchuan.  |e author.  |9 452279 
710 2 |a SpringerLink (Online service)  |9 143950 
773 0 |t Springer eBooks 
830 0 |a Advanced Topics in Science and Technology in China,  |9 566529 
856 4 0 |u http://dx.doi.org/10.1007/978-3-642-41251-6 
856 |y Перейти в каталог НБ ТГУ  |u https://koha.lib.tsu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=402333 
912 |a ZDB-2-SCS 
950 |a Computer Science (Springer-11645) 
999 |c 402333  |d 402333