Applied Statistical Inference Likelihood and Bayes /

This book covers modern statistical inference based on likelihood with applications in medicine, epidemiology and biology. Two introductory chapters discuss the importance of statistical models in applied quantitative research and the central role of the likelihood function. The rest of the book is...

Full description

Bibliographic Details
Published in:Springer eBooks
Main Authors: Held, Leonhard (Author), Sabanés Bové, Daniel (Author)
Corporate Author: SpringerLink (Online service)
Format: eBook
Language:English
Published: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2014.
Subjects:
Online Access:http://dx.doi.org/10.1007/978-3-642-37887-4
Перейти в каталог НБ ТГУ
LEADER 02977nam a22004575i 4500
001 vtls000544507
003 RU-ToGU
005 20210922083120.0
007 cr nn 008mamaa
008 160915s2014 gw | s |||| 0|eng d
020 |a 9783642378874  |9 978-3-642-37887-4 
024 7 |a 10.1007/978-3-642-37887-4  |2 doi 
035 |a to000544507 
039 9 |y 201609152221  |z Александр Эльверович Гилязов 
040 |a Springer  |c Springer  |d RU-ToGU 
050 4 |a QA276-280 
072 7 |a PBT  |2 bicssc 
072 7 |a MAT029000  |2 bisacsh 
082 0 4 |a 519.5  |2 23 
100 1 |a Held, Leonhard.  |e author.  |9 452593 
245 1 0 |a Applied Statistical Inference  |h electronic resource  |b Likelihood and Bayes /  |c by Leonhard Held, Daniel Sabanés Bové. 
260 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2014.  |9 742158 
300 |a XIII, 376 p. 71 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
520 |a This book covers modern statistical inference based on likelihood with applications in medicine, epidemiology and biology. Two introductory chapters discuss the importance of statistical models in applied quantitative research and the central role of the likelihood function. The rest of the book is divided into three parts. The first describes likelihood-based inference from a frequentist viewpoint.  Properties of the maximum likelihood estimate, the score function, the likelihood ratio and the Wald statistic are discussed in detail. In the second part, likelihood is combined with prior information to perform Bayesian inference. Topics include Bayesian updating, conjugate and reference priors, Bayesian point and interval estimates, Bayesian asymptotics and empirical Bayes methods. Modern numerical techniques for Bayesian inference are described in a separate chapter. Finally two more advanced topics, model choice and prediction, are discussed both from a frequentist and a Bayesian perspective.   A comprehensive appendix covers the necessary prerequisites in probability theory, matrix algebra, mathematical calculus, and numerical analysis. 
650 0 |a Statistics.  |9 124796 
650 0 |a Mathematical statistics.  |9 566264 
650 1 4 |a Statistics.  |9 124796 
650 2 4 |a Statistical Theory and Methods.  |9 303276 
650 2 4 |a Statistics for Life Sciences, Medicine, Health Sciences.  |9 265982 
650 2 4 |a Statistics and Computing/Statistics Programs.  |9 303277 
700 1 |a Sabanés Bové, Daniel.  |e author.  |9 452594 
710 2 |a SpringerLink (Online service)  |9 143950 
773 0 |t Springer eBooks 
856 4 0 |u http://dx.doi.org/10.1007/978-3-642-37887-4 
856 |y Перейти в каталог НБ ТГУ  |u https://koha.lib.tsu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=402523 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649) 
999 |c 402523  |d 402523