An Introduction to Markov State Models and Their Application to Long Timescale Molecular Simulation

The aim of this book volume is to explain the importance of Markov state models to molecular simulation, how they work, and how they can be applied to a range of problems.  The Markov state model (MSM) approach aims to address two key challenges of molecular simulation: 1) How to reach long timescal...

Full description

Bibliographic Details
Published in:Springer eBooks
Corporate Author: SpringerLink (Online service)
Other Authors: Bowman, Gregory R. (Editor), Pande, Vijay S. (Editor), Noé, Frank (Editor)
Format: eBook
Language:English
Published: Dordrecht : Springer Netherlands : Imprint: Springer, 2014.
Series:Advances in Experimental Medicine and Biology,
Subjects:
Online Access:http://dx.doi.org/10.1007/978-94-007-7606-7
Перейти в каталог НБ ТГУ
LEADER 04139nam a22005775i 4500
001 vtls000546343
003 RU-ToGU
005 20210922083608.0
007 cr nn 008mamaa
008 160915s2014 ne | s |||| 0|eng d
020 |a 9789400776067  |9 978-94-007-7606-7 
024 7 |a 10.1007/978-94-007-7606-7  |2 doi 
035 |a to000546343 
039 9 |y 201609152249  |z Александр Эльверович Гилязов 
040 |a Springer  |c Springer  |d RU-ToGU 
050 4 |a QH506 
072 7 |a MBGR  |2 bicssc 
072 7 |a PSD  |2 bicssc 
072 7 |a SCI049000  |2 bisacsh 
072 7 |a MED067000  |2 bisacsh 
082 0 4 |a 611.01816  |2 23 
245 1 3 |a An Introduction to Markov State Models and Their Application to Long Timescale Molecular Simulation  |h electronic resource  |c edited by Gregory R. Bowman, Vijay S. Pande, Frank Noé. 
260 |a Dordrecht :  |b Springer Netherlands :  |b Imprint: Springer,  |c 2014.  |9 710710 
300 |a XII, 139 p. 65 illus., 48 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Advances in Experimental Medicine and Biology,  |x 0065-2598 ;  |v 797 
505 0 |a An overview and practical guide to building Markov state models -- Markov model theory -- Estimation and Validation of Markov models -- Uncertainty estimation -- Analysis of Markov models -- Transition Path Theory -- Understanding Protein Folding using Markov state models -- Understanding Molecular Recognition by Kinetic Network Models Constructed from Molecular Dynamics Simulations -- Markov State and Diffusive Stochastic Models in Electron Spin Resonance -- Software for building Markov state models. 
520 |a The aim of this book volume is to explain the importance of Markov state models to molecular simulation, how they work, and how they can be applied to a range of problems.  The Markov state model (MSM) approach aims to address two key challenges of molecular simulation: 1) How to reach long timescales using short simulations of detailed molecular models 2) How to systematically gain insight from the resulting sea of data MSMs do this by providing a compact representation of the vast conformational space available to biomolecules by decomposing it into states-sets of rapidly interconverting conformations-and the rates of transitioning between states. This kinetic definition allows one to easily vary the temporal and spatial resolution of an MSM from high-resolution models capable of quantitative agreement with (or prediction of) experiment to low-resolution models that facilitate understanding. Additionally, MSMs facilitate the calculation of quantities that are difficult to obtain from more direct MD analyses, such as the ensemble of transition pathways. This book introduces the mathematical foundations of Markov models, how they can be used to analyze simulations and drive efficient simulations, and some of the insights these models have yielded in a variety of applications of molecular simulation. 
650 0 |a medicine.  |9 566220 
650 0 |a Chemistry, Physical organic.  |9 566250 
650 0 |a Biology  |x Data processing.  |9 305000 
650 0 |a mathematics.  |9 566183 
650 1 4 |a Biomedicine.  |9 566246 
650 2 4 |a Molecular Medicine.  |9 303561 
650 2 4 |a Theoretical, Mathematical and Computational Physics.  |9 410498 
650 2 4 |a Computer Appl. in Life Sciences.  |9 305001 
650 2 4 |a Physical Chemistry.  |9 566251 
650 2 4 |a Mathematics, general.  |9 304764 
700 1 |a Bowman, Gregory R.  |e editor.  |9 455313 
700 1 |a Pande, Vijay S.  |e editor.  |9 455314 
700 1 |a Noé, Frank.  |e editor.  |9 455315 
710 2 |a SpringerLink (Online service)  |9 143950 
773 0 |t Springer eBooks 
830 0 |a Advances in Experimental Medicine and Biology,  |9 303385 
856 4 0 |u http://dx.doi.org/10.1007/978-94-007-7606-7 
856 |y Перейти в каталог НБ ТГУ  |u https://koha.lib.tsu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=404032 
912 |a ZDB-2-SBL 
950 |a Biomedical and Life Sciences (Springer-11642) 
999 |c 404032  |d 404032