Machine Learning Projects for .NET Developers

Machine Learning Projects for .NET Developers shows you how to build smarter .NET applications that learn from data, using simple algorithms and techniques that can be applied to a wide range of real-world problems. You'll code each project in the familiar setting of Visual Studio, while the ma...

Full description

Bibliographic Details
Published in:Springer eBooks
Main Author: Brandewinder, Mathias (Author)
Corporate Author: SpringerLink (Online service)
Format: eBook
Language:English
Published: Berkeley, CA : Apress : Imprint: Apress, 2015.
Subjects:
Online Access:http://dx.doi.org/10.1007/978-1-4302-6766-9
Перейти в каталог НБ ТГУ
LEADER 03174nam a22004335i 4500
001 vtls000556386
003 RU-ToGU
005 20210922084957.0
007 cr nn 008mamaa
008 170212s2015 xxu| s |||| 0|eng d
020 |a 9781430267669  |9 978-1-4302-6766-9 
024 7 |a 10.1007/978-1-4302-6766-9  |2 doi 
035 |a to000556386 
039 9 |y 201702122100  |z Александр Эльверович Гилязов 
040 |a Springer  |c Springer  |d RU-ToGU 
050 4 |a QA75.5-76.95 
072 7 |a UY  |2 bicssc 
072 7 |a COM014000  |2 bisacsh 
082 0 4 |a 004  |2 23 
100 1 |a Brandewinder, Mathias.  |e author.  |9 460728 
245 1 0 |a Machine Learning Projects for .NET Developers  |h electronic resource  |c by Mathias Brandewinder. 
260 |a Berkeley, CA :  |b Apress :  |b Imprint: Apress,  |c 2015.  |9 712623 
300 |a XIX, 300 p. 84 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
520 |a Machine Learning Projects for .NET Developers shows you how to build smarter .NET applications that learn from data, using simple algorithms and techniques that can be applied to a wide range of real-world problems. You'll code each project in the familiar setting of Visual Studio, while the machine learning logic uses F#, a language ideally suited to machine learning applications in .NET. If you're new to F#, this book will give you everything you need to get started. If you're already familiar with F#, this is your chance to put the language into action in an exciting new context. In a series of fascinating projects, you'll learn how to: Build an optical character recognition (OCR) system from scratch Code a spam filter that learns by example Use F#'s powerful type providers to interface with external resources (in this case, data analysis tools from the R programming language) Transform your data into informative features, and use them to make accurate predictions Find patterns in data when you don't know what you're looking for Predict numerical values using regression models Implement an intelligent game that learns how to play from experience Along the way, you'll learn fundamental ideas that can be applied in all kinds of real-world contexts and industries, from advertising to finance, medicine, and scientific research. While some machine learning algorithms use fairly advanced mathematics, this book focuses on simple but effective approaches. If you enjoy hacking code and data, this book is for you. 
650 0 |a Computer Science.  |9 155490 
650 0 |a Artificial intelligence.  |9 274099 
650 1 4 |a Computer Science.  |9 155490 
650 2 4 |a Computer Science, general.  |9 155491 
650 2 4 |a Artificial Intelligence (incl. Robotics).  |9 274102 
710 2 |a SpringerLink (Online service)  |9 143950 
773 0 |t Springer eBooks 
856 4 0 |u http://dx.doi.org/10.1007/978-1-4302-6766-9 
856 |y Перейти в каталог НБ ТГУ  |u https://koha.lib.tsu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=411116 
912 |a ZDB-2-CWD 
950 |a Professional and Applied Computing (Springer-12059) 
999 |c 411116  |d 411116