Operator Theory

A one-sentence definition of operator theory could be: The study of (linear) continuous operations between topological vector spaces, these being in general (but not exclusively) Fréchet, Banach, or Hilbert spaces (or their duals). Operator theory is thus a very wide field, with numerous facets, bo...

Full description

Bibliographic Details
Published in:Springer eBooks
Corporate Author: SpringerLink (Online service)
Other Authors: Alpay, Daniel (Editor)
Format: eBook
Language:English
Published: Basel : Springer Basel : Imprint: Springer, 2015.
Subjects:
Online Access:http://dx.doi.org/10.1007/978-3-0348-0667-1
Перейти в каталог НБ ТГУ
LEADER 03067nam a22005175i 4500
001 vtls000557141
003 RU-ToGU
005 20210922085056.0
007 cr nn 008mamaa
008 170212s2015 sz | s |||| 0|eng d
020 |a 9783034806671  |9 978-3-0348-0667-1 
024 7 |a 10.1007/978-3-0348-0667-1  |2 doi 
035 |a to000557141 
039 9 |y 201702122114  |z Александр Эльверович Гилязов 
040 |a Springer  |c Springer  |d RU-ToGU 
050 4 |a QA329-329.9 
072 7 |a PBKF  |2 bicssc 
072 7 |a MAT037000  |2 bisacsh 
082 0 4 |a 515.724  |2 23 
245 1 0 |a Operator Theory  |h electronic resource  |c edited by Daniel Alpay. 
260 |a Basel :  |b Springer Basel :  |b Imprint: Springer,  |c 2015.  |9 742234 
300 |a 51 illus., 18 illus. in color. eReference.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
505 0 |a General aspects of quaternionic and Clifford analysis -- Further developments of quaternionic and Clifford analysis -- Infinite dimensional analysis -- Non-commutative theory -- Multivariable operator theory -- Reproducing kernel Hilbert spaces -- de Branges spaces -- Indefinite inner product spaces -- Schur analysis -- Linear system theory. 
520 |a A one-sentence definition of operator theory could be: The study of (linear) continuous operations between topological vector spaces, these being in general (but not exclusively) Fréchet, Banach, or Hilbert spaces (or their duals). Operator theory is thus a very wide field, with numerous facets, both applied and theoretical. There are deep connections with complex analysis, functional analysis, mathematical physics, and electrical engineering, to name a few. Fascinating new applications and directions regularly appear, such as operator spaces, free probability, and applications to Clifford analysis. In our choice of the sections, we tried to reflect this diversity. This is a dynamic ongoing project, and more sections are planned, to complete the picture. We hope you enjoy the reading, and profit from this endeavor. 
650 0 |a mathematics.  |9 566183 
650 0 |a Functional analysis.  |9 566329 
650 0 |a Global analysis (Mathematics).  |9 303497 
650 0 |a Manifolds (Mathematics).  |9 461278 
650 0 |a Operator theory.  |9 566350 
650 0 |a System theory.  |9 460201 
650 1 4 |a Mathematics.  |9 566184 
650 2 4 |a Operator Theory.  |9 566351 
650 2 4 |a Global Analysis and Analysis on Manifolds.  |9 303748 
650 2 4 |a Functional Analysis.  |9 566330 
650 2 4 |a Systems Theory, Control.  |9 304010 
700 1 |a Alpay, Daniel.  |e editor.  |9 330518 
710 2 |a SpringerLink (Online service)  |9 143950 
773 0 |t Springer eBooks 
856 4 0 |u http://dx.doi.org/10.1007/978-3-0348-0667-1 
856 |y Перейти в каталог НБ ТГУ  |u https://koha.lib.tsu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=411478 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649) 
999 |c 411478  |d 411478