Handbook of Mathematical Methods in Imaging

The Handbook of Mathematical Methods in Imaging provides a comprehensive treatment of the mathematical techniques used in imaging science. The material is grouped into two central themes, namely, Inverse Problems (Algorithmic Reconstruction) and Signal and Image Processing. Each section within the t...

Full description

Bibliographic Details
Published in:Springer eBooks
Corporate Author: SpringerLink (Online service)
Other Authors: Scherzer, Otmar (Editor)
Format: eBook
Language:English
Published: New York, NY : Springer New York : Imprint: Springer, 2015.
Edition:2nd ed. 2015.
Subjects:
Online Access:http://dx.doi.org/10.1007/978-1-4939-0790-8
Перейти в каталог НБ ТГУ
LEADER 05260nam a22005415i 4500
001 vtls000556790
003 RU-ToGU
005 20210922085102.0
007 cr nn 008mamaa
008 170212s2015 xxu| s |||| 0|eng d
020 |a 9781493907908  |9 978-1-4939-0790-8 
024 7 |a 10.1007/978-1-4939-0790-8  |2 doi 
035 |a to000556790 
039 9 |y 201702122106  |z Александр Эльверович Гилязов 
040 |a Springer  |c Springer  |d RU-ToGU 
050 4 |a QA76.9.M35 
072 7 |a PBWH  |2 bicssc 
072 7 |a MAT003000  |2 bisacsh 
082 0 4 |a 004.0151  |2 23 
245 1 0 |a Handbook of Mathematical Methods in Imaging  |h electronic resource  |c edited by Otmar Scherzer. 
250 |a 2nd ed. 2015. 
260 |a New York, NY :  |b Springer New York :  |b Imprint: Springer,  |c 2015.  |9 724206 
300 |a 472 illus., 200 illus. in color. eReference.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
505 0 |a Linear Inverse Problems -- Large-Scale Inverse Problems in Imaging -- Regularization Methods for Ill-Posed Problems -- Distance Measures and Applications to Multi-Modal Variational Imaging -- Energy Minimization Methods -- Compressive Sensing -- Duality and Convex Programming -- EM Algorithms -- Iterative Solution Methods -- Level Set Methods for Structural Inversion and Image Reconstructions -- Expansion Methods -- Sampling Methods -- Inverse Scattering -- Electrical Impedance Tomography -- Synthetic Aperture Radar Imaging -- Tomography -- Optical Imaging -- Photoacoustic and Thermoacoustic Tomography: Image Formation Principles -- Mathematics of Photoacoustic and Thermoacoustic Tomography -- Wave Phenomena -- Statistical Methods in Imaging -- Supervised Learning by Support Vector Machines -- Total Variation in Imaging -- Numerical Methods and Applications in Total Variation Image Restoration -- Mumford and Shah Model and its Applications in Total Variation Image Restoration -- Local Smoothing Neighbourhood Filters -- Neighbourhood Filters and the Recovery of 3D Information -- Splines and Multiresolution Analysis -- Gabor Analysis for Imaging -- Shaper Spaces -- Variational Methods in Shape Analysis -- Manifold Intrinsic Similarity -- Image Segmentation with Shape Priors: Explicit Versus Implicit Representations -- Starlet Transform in Astronomical Data Processing -- Differential Methods for Multi-Dimensional Visual Data Analysis -- Wave fronts in Imaging, Quinto -- Ultrasound Tomography, Natterer -- Optical Flow, Schnoerr -- Morphology, Petros -- Maragos -- PDEs, Weickert. - Registration, Modersitzki -- Discrete Geometry in Imaging, Bobenko, Pottmann -- Visualization, Hege -- Fast Marching and Level Sets, Osher -- Couple Physics Imaging, Arridge -- Imaging in Random Media, Borcea -- Conformal Methods, Gu -- Texture, Peyre -- Graph Cuts, Darbon -- Imaging in Physics with Fourier Transform (i.e.Phase Retrieval e.g Dark field imaging), J. R. Fienup -- Electron Microscopy, Öktem Ozan -- Mathematical Imaging OCT (this is also FFT based), Mark E. Brezinski -- Spect, PET, Faukas, Louis. 
520 |a The Handbook of Mathematical Methods in Imaging provides a comprehensive treatment of the mathematical techniques used in imaging science. The material is grouped into two central themes, namely, Inverse Problems (Algorithmic Reconstruction) and Signal and Image Processing. Each section within the themes covers applications (modeling), mathematics, numerical methods (using a case example) and open questions. Written by experts in the area, the presentation is mathematically rigorous. This expanded and revised second edition contains updates to existing chapters and 16 additional entries on important mathematical methods such as graph cuts, morphology, discrete geometry, PDEs, conformal methods, to name a few. The entries are cross-referenced for easy navigation through connected topics. Available in both print and electronic forms, the handbook is enhanced by more than 200 illustrations and an extended bibliography. It will benefit students, scientists and researchers in applied mathematics. Engineers and computer scientists working in imaging will also find this handbook useful. 
650 0 |a mathematics.  |9 566183 
650 0 |a Radiology.  |9 281356 
650 0 |a Image Processing.  |9 304128 
650 0 |a Computer science  |x Mathematics.  |9 304486 
650 0 |a Computer mathematics.  |9 460896 
650 0 |a Numerical analysis.  |9 566288 
650 1 4 |a Mathematics.  |9 566184 
650 2 4 |a Mathematical Applications in Computer Science.  |9 412135 
650 2 4 |a Image Processing and Computer Vision.  |9 303601 
650 2 4 |a Signal, Image and Speech Processing.  |9 274103 
650 2 4 |a Numerical Analysis.  |9 566289 
650 2 4 |a Imaging / Radiology.  |9 281358 
700 1 |a Scherzer, Otmar.  |e editor.  |9 306639 
710 2 |a SpringerLink (Online service)  |9 143950 
773 0 |t Springer eBooks 
856 4 0 |u http://dx.doi.org/10.1007/978-1-4939-0790-8 
856 |y Перейти в каталог НБ ТГУ  |u https://koha.lib.tsu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=411506 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649) 
999 |c 411506  |d 411506