Analysis on h-Harmonics and Dunkl Transforms

As a unique case in this Advanced Courses book series, the authors have jointly written this introduction to h-harmonics and Dunkl transforms. These are extensions of the ordinary spherical harmonics and Fourier transforms, in which the usual Lebesgue measure is replaced by a reflection-invariant we...

Full description

Bibliographic Details
Published in:Springer eBooks
Main Authors: Dai, Feng (Author), Xu, Yuan (Author)
Corporate Author: SpringerLink (Online service)
Other Authors: Tikhonov, Sergey (Editor)
Format: eBook
Language:English
Published: Basel : Springer Basel : Imprint: Birkhäuser, 2015.
Series:Advanced Courses in Mathematics - CRM Barcelona,
Subjects:
Online Access:http://dx.doi.org/10.1007/978-3-0348-0887-3
Перейти в каталог НБ ТГУ
LEADER 03542nam a22005655i 4500
001 vtls000557145
003 RU-ToGU
005 20210922085107.0
007 cr nn 008mamaa
008 170212s2015 sz | s |||| 0|eng d
020 |a 9783034808873  |9 978-3-0348-0887-3 
024 7 |a 10.1007/978-3-0348-0887-3  |2 doi 
035 |a to000557145 
039 9 |y 201702122114  |z Александр Эльверович Гилязов 
040 |a Springer  |c Springer  |d RU-ToGU 
050 4 |a QA401-425 
072 7 |a PBKJ  |2 bicssc 
072 7 |a MAT034000  |2 bisacsh 
082 0 4 |a 511.4  |2 23 
100 1 |a Dai, Feng.  |e author.  |9 461387 
245 1 0 |a Analysis on h-Harmonics and Dunkl Transforms  |h electronic resource  |c by Feng Dai, Yuan Xu ; edited by Sergey Tikhonov. 
260 |a Basel :  |b Springer Basel :  |b Imprint: Birkhäuser,  |c 2015.  |9 742206 
300 |a VIII, 118 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Advanced Courses in Mathematics - CRM Barcelona,  |x 2297-0304 
505 0 |a Preface -- Spherical harmonics and Fourier transform -- Dunkl operators associated with reflection groups -- h-Harmonics and analysis on the sphere -- Littlewood-Paley theory and the multiplier theorem -- Sharp Jackson and sharp Marchaud inequalities -- Dunkl transform -- Multiplier theorems for the Dunkl transform -- Bibliography. 
520 |a As a unique case in this Advanced Courses book series, the authors have jointly written this introduction to h-harmonics and Dunkl transforms. These are extensions of the ordinary spherical harmonics and Fourier transforms, in which the usual Lebesgue measure is replaced by a reflection-invariant weighted measure. The theory, originally introduced by C. Dunkl, has been expanded on by many authors over the last 20 years. These notes provide an overview of what has been developed so far. The first chapter gives a brief recount of the basics of ordinary spherical harmonics and the Fourier transform. The Dunkl operators, the intertwining operators between partial derivatives and the Dunkl operators are introduced and discussed in the second chapter. The next three chapters are devoted to analysis on the sphere, and the final two chapters to the Dunkl transform. The authors' focus is on the analysis side of both h-harmonics and Dunkl transforms. The need for background knowledge on reflection groups is kept to a bare minimum. 
650 0 |a mathematics.  |9 566183 
650 0 |a Harmonic analysis.  |9 566357 
650 0 |a Approximation theory.  |9 460183 
650 0 |a Functional analysis.  |9 566329 
650 0 |a Integral Transforms.  |9 307452 
650 0 |a Operational calculus.  |9 461388 
650 1 4 |a Mathematics.  |9 566184 
650 2 4 |a Approximations and Expansions.  |9 306879 
650 2 4 |a Abstract Harmonic Analysis.  |9 566358 
650 2 4 |a Integral Transforms, Operational Calculus.  |9 307454 
650 2 4 |a Functional Analysis.  |9 566330 
700 1 |a Xu, Yuan.  |e author.  |9 461389 
700 1 |a Tikhonov, Sergey.  |e editor.  |9 447131 
710 2 |a SpringerLink (Online service)  |9 143950 
773 0 |t Springer eBooks 
830 0 |a Advanced Courses in Mathematics - CRM Barcelona,  |9 567362 
856 4 0 |u http://dx.doi.org/10.1007/978-3-0348-0887-3 
856 |y Перейти в каталог НБ ТГУ  |u https://koha.lib.tsu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=411532 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649) 
999 |c 411532  |d 411532