Machine Learning for Adaptive Many-Core Machines - A Practical Approach

The overwhelming data produced everyday and the increasing performance and cost requirements of applications is transversal to a wide range of activities in society, from science to industry. In particular, the magnitude and complexity of the tasks that Machine Learning (ML) algorithms have to solve...

Full description

Bibliographic Details
Published in:Springer eBooks
Main Authors: Lopes, Noel (Author), Ribeiro, Bernardete (Author)
Corporate Author: SpringerLink (Online service)
Format: eBook
Language:English
Published: Cham : Springer International Publishing : Imprint: Springer, 2015.
Series:Studies in Big Data,
Subjects:
Online Access:http://dx.doi.org/10.1007/978-3-319-06938-8
Перейти в каталог НБ ТГУ
LEADER 03267nam a22005295i 4500
001 vtls000557332
003 RU-ToGU
005 20210922085321.0
007 cr nn 008mamaa
008 170212s2015 gw | s |||| 0|eng d
020 |a 9783319069388  |9 978-3-319-06938-8 
024 7 |a 10.1007/978-3-319-06938-8  |2 doi 
035 |a to000557332 
039 9 |y 201702122118  |z Александр Эльверович Гилязов 
040 |a Springer  |c Springer  |d RU-ToGU 
050 4 |a Q342 
072 7 |a UYQ  |2 bicssc 
072 7 |a COM004000  |2 bisacsh 
082 0 4 |a 006.3  |2 23 
100 1 |a Lopes, Noel.  |e author.  |9 462625 
245 1 0 |a Machine Learning for Adaptive Many-Core Machines - A Practical Approach  |h electronic resource  |c by Noel Lopes, Bernardete Ribeiro. 
260 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2015.  |9 742221 
300 |a XX, 241 p. 112 illus., 4 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Studies in Big Data,  |x 2197-6503 ;  |v 7 
505 0 |a Introduction -- Supervised Learning -- Unsupervised and Semi-supervised Learning -- Large-Scale Machine Learning. 
520 |a The overwhelming data produced everyday and the increasing performance and cost requirements of applications is transversal to a wide range of activities in society, from science to industry. In particular, the magnitude and complexity of the tasks that Machine Learning (ML) algorithms have to solve are driving the need to devise adaptive many-core machines that scale well with the volume of data, or in other words, can handle Big Data. This book gives a concise view on how to extend the applicability of well-known ML algorithms in Graphics Processing Unit (GPU) with data scalability in mind. It presents a series of new techniques to enhance, scale and distribute data in a Big Learning framework. It is not intended to be a comprehensive survey of the state of the art of the whole field of machine learning for Big Data. Its purpose is less ambitious and more practical: to explain and illustrate existing and novel GPU-based ML algorithms, not viewed as a universal solution for the Big Data challenges but rather as part of the answer, which may require the use of different strategies coupled together. 
650 0 |a engineering.  |9 224332 
650 0 |a Operations research.  |9 303058 
650 0 |a Decision making.  |9 294514 
650 0 |a Artificial intelligence.  |9 274099 
650 0 |a Computational Intelligence.  |9 307538 
650 1 4 |a Engineering.  |9 224332 
650 2 4 |a Computational Intelligence.  |9 307538 
650 2 4 |a Artificial Intelligence (incl. Robotics).  |9 274102 
650 2 4 |a Operation Research/Decision Theory.  |9 411428 
700 1 |a Ribeiro, Bernardete.  |e author.  |9 321440 
710 2 |a SpringerLink (Online service)  |9 143950 
773 0 |t Springer eBooks 
830 0 |a Studies in Big Data,  |9 448426 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-06938-8 
856 |y Перейти в каталог НБ ТГУ  |u https://koha.lib.tsu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=412248 
912 |a ZDB-2-ENG 
950 |a Engineering (Springer-11647) 
999 |c 412248  |d 412248