Computational Counterpoint Worlds Mathematical Theory, Software, and Experiments /

The mathematical theory of counterpoint was originally aimed at simulating the composition rules described in Johann Joseph Fux's Gradus ad Parnassum. It soon became apparent that the algebraic apparatus used in this model could also serve to define entirely new systems of rules for composition...

Full description

Bibliographic Details
Published in:Springer eBooks
Main Authors: Agustín-Aquino, Octavio Alberto (Author), Junod, Julien (Author), Mazzola, Guerino (Author)
Corporate Author: SpringerLink (Online service)
Format: eBook
Language:English
Published: Cham : Springer International Publishing : Imprint: Springer, 2015.
Series:Computational Music Science,
Subjects:
Online Access:http://dx.doi.org/10.1007/978-3-319-11236-7
Перейти в каталог НБ ТГУ
LEADER 03229nam a22005295i 4500
001 vtls000558025
003 RU-ToGU
005 20210922085428.0
007 cr nn 008mamaa
008 170212s2015 gw | s |||| 0|eng d
020 |a 9783319112367  |9 978-3-319-11236-7 
024 7 |a 10.1007/978-3-319-11236-7  |2 doi 
035 |a to000558025 
039 9 |y 201702122138  |z Александр Эльверович Гилязов 
040 |a Springer  |c Springer  |d RU-ToGU 
050 4 |a NX260 
072 7 |a H  |2 bicssc 
072 7 |a UB  |2 bicssc 
072 7 |a COM018000  |2 bisacsh 
072 7 |a ART000000  |2 bisacsh 
082 0 4 |a 004  |2 23 
100 1 |a Agustín-Aquino, Octavio Alberto.  |e author.  |9 463269 
245 1 0 |a Computational Counterpoint Worlds  |h electronic resource  |b Mathematical Theory, Software, and Experiments /  |c by Octavio Alberto Agustín-Aquino, Julien Junod, Guerino Mazzola. 
260 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2015.  |9 742221 
300 |a X, 220 p. 57 illus., 16 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Computational Music Science,  |x 1868-0305 
505 0 |a Counterpoint -- First-Species Model -- Preliminary Background -- Quasipolarities and Interval Dichotomies -- Towers of Counterpoint -- Graphs -- Transformations -- Implementation -- Second-Species Model -- Hypergesture Homology -- Glossary -- Index. 
520 |a The mathematical theory of counterpoint was originally aimed at simulating the composition rules described in Johann Joseph Fux's Gradus ad Parnassum. It soon became apparent that the algebraic apparatus used in this model could also serve to define entirely new systems of rules for composition, generated by new choices of consonances and dissonances, which in turn lead to new restrictions governing the succession of intervals.   This is the first book bringing together recent developments and perspectives on mathematical counterpoint theory in detail. The authors include recent theoretical results on counterpoint worlds, the extension of counterpoint to microtonal pitch systems, the singular homology of counterpoint models, and the software implementation of contrapuntal models.   The book is suitable for graduates and researchers. A good command of algebra is a prerequisite for understanding the construction of the model. 
650 0 |a Computer Science.  |9 155490 
650 0 |a music.  |9 566408 
650 0 |a Application software.  |9 459955 
650 1 4 |a Computer Science.  |9 155490 
650 2 4 |a Computer Appl. in Arts and Humanities.  |9 306361 
650 2 4 |a Music.  |9 566409 
700 1 |a Junod, Julien.  |e author.  |9 463270 
700 1 |a Mazzola, Guerino.  |e author.  |9 319564 
710 2 |a SpringerLink (Online service)  |9 143950 
773 0 |t Springer eBooks 
830 0 |a Computational Music Science,  |9 333307 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-11236-7 
856 |y Перейти в каталог НБ ТГУ  |u https://koha.lib.tsu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=412590 
912 |a ZDB-2-SCS 
950 |a Computer Science (Springer-11645) 
999 |c 412590  |d 412590