Partial Stabilization and Control of Distributed Parameter Systems with Elastic Elements

 This monograph provides a rigorous treatment of problems related to partial asymptotic stability and controllability for models of flexible structures described by coupled nonlinear ordinary and partial differential equations or equations in abstract spaces. The text is self-contained, beginning wi...

Full description

Bibliographic Details
Published in:Springer eBooks
Main Author: Zuyev, Alexander L. (Author)
Corporate Author: SpringerLink (Online service)
Format: eBook
Language:English
Published: Cham : Springer International Publishing : Imprint: Springer, 2015.
Series:Lecture Notes in Control and Information Sciences,
Subjects:
Online Access:http://dx.doi.org/10.1007/978-3-319-11532-0
Перейти в каталог НБ ТГУ
LEADER 04415nam a22005415i 4500
001 vtls000558083
003 RU-ToGU
005 20210922085457.0
007 cr nn 008mamaa
008 170212s2015 gw | s |||| 0|eng d
020 |a 9783319115320  |9 978-3-319-11532-0 
024 7 |a 10.1007/978-3-319-11532-0  |2 doi 
035 |a to000558083 
039 9 |y 201702122140  |z Александр Эльверович Гилязов 
040 |a Springer  |c Springer  |d RU-ToGU 
050 4 |a TJ212-225 
072 7 |a TJFM  |2 bicssc 
072 7 |a TEC004000  |2 bisacsh 
082 0 4 |a 629.8  |2 23 
100 1 |a Zuyev, Alexander L.  |e author.  |9 463535 
245 1 0 |a Partial Stabilization and Control of Distributed Parameter Systems with Elastic Elements  |h electronic resource  |c by Alexander L. Zuyev. 
260 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2015.  |9 742221 
300 |a XIII, 232 p. 16 illus., 1 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Lecture Notes in Control and Information Sciences,  |x 0170-8643 ;  |v 458 
505 0 |a Basic Results from the Theory of Continuous Semigroups of Operator -- Partial Asymptotic Stability -- Stabilization of a Rotating Body with Euler-Bernoulli Beams -- Reachable Sets and Controllability Conditions -- Observer-Based Stabilization of a Manipulator Based on the Timoshenko Beam Model -- Control and Stabilization of a Rotating Kirchhoff Plate.-Appendices. 
520 |a  This monograph provides a rigorous treatment of problems related to partial asymptotic stability and controllability for models of flexible structures described by coupled nonlinear ordinary and partial differential equations or equations in abstract spaces. The text is self-contained, beginning with some basic results from the theory of continuous semigroups of operators in Banach spaces. The problem of partial asymptotic stability with respect to a continuous functional is then considered for a class of abstract multivalued systems on a metric space. Next, the results of this study are applied to the study of a rotating body with elastic attachments. Professor Zuyev demonstrates that the equilibrium cannot be made strongly asymptotically stable in the general case, motivating consideration of the problem of partial stabilization with respect to the functional that represents "averaged" oscillations. The book's focus moves on to spillover analysis for infinite-dimensional systems with finite-dimensional controls. It is shown that a family of L2-minimal controls, corresponding to low frequencies, can be used to obtain approximate solutions of the steering problem for the complete system. The book turns from the examination of an abstract class of systems to particular physical examples. Timoshenko beam theory is exploited in studying a mathematical model of a flexible-link manipulator.  Finally, a mechanical system consisting of a rigid body with the Kirchhoff plate is considered. Having established that such a system is not controllable in general, sufficient controllability conditions are proposed for the dynamics on an invariant manifold. Academic researchers and graduate students interested  in control theory and mechanical engineering will find Partial Stabilization and Control of Distributed-Parameter Systems with Elastic Elements a valuable and authoritative resource for investigations on the subject of partial stabilization. 
650 0 |a engineering.  |9 224332 
650 0 |a System theory.  |9 460201 
650 0 |a Structural Mechanics.  |9 304375 
650 0 |a Control Engineering.  |9 304706 
650 0 |a Robotics.  |9 348072 
650 0 |a Automation.  |9 306477 
650 1 4 |a Engineering.  |9 224332 
650 2 4 |a control.  |9 348605 
650 2 4 |a Systems Theory, Control.  |9 304010 
650 2 4 |a Structural Mechanics.  |9 304375 
650 2 4 |a Robotics and Automation.  |9 412714 
710 2 |a SpringerLink (Online service)  |9 143950 
773 0 |t Springer eBooks 
830 0 |a Lecture Notes in Control and Information Sciences,  |9 566474 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-11532-0 
856 |y Перейти в каталог НБ ТГУ  |u https://koha.lib.tsu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=412745 
912 |a ZDB-2-ENG 
950 |a Engineering (Springer-11647) 
999 |c 412745  |d 412745