Mathematical Aspects of Quantum Field Theories

Despite its long history and stunning experimental successes, the mathematical foundation of perturbative quantum field theory is still a subject of ongoing research. This book aims at presenting some of the most recent advances in the field, and at reflecting the diversity of approaches and tools i...

Full description

Bibliographic Details
Published in:Springer eBooks
Corporate Author: SpringerLink (Online service)
Other Authors: Calaque, Damien (Editor), Strobl, Thomas (Editor)
Format: eBook
Language:English
Published: Cham : Springer International Publishing : Imprint: Springer, 2015.
Series:Mathematical Physics Studies,
Subjects:
Online Access:http://dx.doi.org/10.1007/978-3-319-09949-1
Перейти в каталог НБ ТГУ
LEADER 04685nam a22005295i 4500
001 vtls000557755
003 RU-ToGU
005 20210922085502.0
007 cr nn 008mamaa
008 170212s2015 gw | s |||| 0|eng d
020 |a 9783319099491  |9 978-3-319-09949-1 
024 7 |a 10.1007/978-3-319-09949-1  |2 doi 
035 |a to000557755 
039 9 |y 201702122130  |z Александр Эльверович Гилязов 
040 |a Springer  |c Springer  |d RU-ToGU 
050 4 |a QC174.45-174.52 
072 7 |a PHS  |2 bicssc 
072 7 |a SCI057000  |2 bisacsh 
082 0 4 |a 530.14  |2 23 
245 1 0 |a Mathematical Aspects of Quantum Field Theories  |h electronic resource  |c edited by Damien Calaque, Thomas Strobl. 
260 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2015.  |9 742221 
300 |a XXVIII, 556 p. 145 illus., 26 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Mathematical Physics Studies,  |x 0921-3767 
505 0 |a A derived and homotopical view on field theories, Damien Calaque -- Part I Locality in Perturbative QFTs -- 2 Perturbative algebraic quantum field theory, Klaus Fredenhagen and Katarzyna Rejzner -- Lectures on mathematical aspects of (twisted) supersymmetric gauge theories, Kevin Costello and Claudia Scheimbauer -- 4 Snapshots of Conformal Field Theory, Katrin Wendland -- Part II Chern-Simons Theory -- Faddeev's quantum dilogarithm and state-integrals on shaped triangulations, Jørgen Ellegaard Andersen and Rinat Kashaev -- 6 A higher stacky perspective on Chern-Simons theory, Domenico Fiorenza, Hisham Sati and Urs Schreiber -- Factorization homology in 3-dimensional topology, Nikita Markarian & Hiro Lee Tanaka -- Manifoldic homology and Chern-Simons formalism (by Nikita Markarian) -- Factorization Homology and Link Invariants (by Hiro Lee Tanaka) -- Deligne-Beilinson cohomology in U(1) Chern-Simons theories, Frank Thuillier -- Part III (Semi-)Classical Field Theories -- Semiclassical quantization of classical field theories, Alberto S. Cattaneo, Pavel Mnev and Nicolai Reshetikhin -- Local BRST cohomology for AKSZ field theories: a global approach, Giuseppe Bonavolontà and Alexei Kotov -- Symplectic and Poisson geometry of the moduli spaces of at connections over quilted surfaces, David Li-Bland and Pavol Ševera -- Groupoids, Frobenius algebras and Poisson sigma models, Ivan Contreras -- Part IV Algebraic Aspects of Locality -- Notes on factorization algebras, factorization homology and applications, Grégory Ginot -- Index. 
520 |a Despite its long history and stunning experimental successes, the mathematical foundation of perturbative quantum field theory is still a subject of ongoing research. This book aims at presenting some of the most recent advances in the field, and at reflecting the diversity of approaches and tools invented and currently employed. Both leading experts and comparative newcomers to the field present their latest findings, helping readers to gain a better understanding of not only quantum but also classical field theories. Though the book offers a valuable resource for mathematicians and physicists alike, the focus is more on mathematical developments. This volume consists of four parts: The first Part covers local aspects of perturbative quantum field theory, with an emphasis on the axiomatization of the algebra behind the operator product expansion. The second Part highlights Chern-Simons gauge theories, while the third examines (semi-)classical field theories. In closing, Part 4 addresses factorization homology and factorization algebras. 
650 0 |a physics.  |9 566227 
650 0 |a Mathematical physics.  |9 296775 
650 0 |a Quantum field theory.  |9 435590 
650 0 |a String theory.  |9 462418 
650 1 4 |a Physics.  |9 566228 
650 2 4 |a Quantum Field Theories, String Theory.  |9 410434 
650 2 4 |a Mathematical Physics.  |9 296775 
650 2 4 |a History and Philosophical Foundations of Physics.  |9 296780 
650 2 4 |a Mathematical Applications in the Physical Sciences.  |9 410541 
700 1 |a Calaque, Damien.  |e editor.  |9 463583 
700 1 |a Strobl, Thomas.  |e editor.  |9 463584 
710 2 |a SpringerLink (Online service)  |9 143950 
773 0 |t Springer eBooks 
830 0 |a Mathematical Physics Studies,  |9 314701 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-09949-1 
856 |y Перейти в каталог НБ ТГУ  |u https://koha.lib.tsu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=412770 
912 |a ZDB-2-PHA 
950 |a Physics and Astronomy (Springer-11651) 
999 |c 412770  |d 412770