Interdisciplinary Bayesian Statistics EBEB 2014 /

Through refereed papers, this volume focuses on the foundations of the Bayesian paradigm; their comparison to objectivistic or frequentist Statistics counterparts; and the appropriate application of Bayesian foundations. This research in Bayesian Statistics is applicable to data analysis in biostati...

Full description

Bibliographic Details
Published in:Springer eBooks
Corporate Author: SpringerLink (Online service)
Other Authors: Polpo, Adriano (Editor), Louzada, Francisco (Editor), Rifo, Laura L. R. (Editor), Stern, Julio M. (Editor), Lauretto, Marcelo (Editor)
Format: eBook
Language:English
Published: Cham : Springer International Publishing : Imprint: Springer, 2015.
Series:Springer Proceedings in Mathematics & Statistics,
Subjects:
Online Access:http://dx.doi.org/10.1007/978-3-319-12454-4
Перейти в каталог НБ ТГУ
LEADER 04525nam a22005175i 4500
001 vtls000558253
003 RU-ToGU
005 20210922085628.0
007 cr nn 008mamaa
008 170212s2015 gw | s |||| 0|eng d
020 |a 9783319124544  |9 978-3-319-12454-4 
024 7 |a 10.1007/978-3-319-12454-4  |2 doi 
035 |a to000558253 
039 9 |y 201702122146  |z Александр Эльверович Гилязов 
040 |a Springer  |c Springer  |d RU-ToGU 
050 4 |a QA276-280 
072 7 |a PBT  |2 bicssc 
072 7 |a MAT029000  |2 bisacsh 
082 0 4 |a 519.5  |2 23 
245 1 0 |a Interdisciplinary Bayesian Statistics  |h electronic resource  |b EBEB 2014 /  |c edited by Adriano Polpo, Francisco Louzada, Laura L. R. Rifo, Julio M. Stern, Marcelo Lauretto. 
260 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2015.  |9 742221 
300 |a XVIII, 366 p. 67 illus., 45 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Springer Proceedings in Mathematics & Statistics,  |x 2194-1009 ;  |v 118 
505 0 |a What About the Posterior Distributions When the Model is Non-dominated -- Bayesian Learning of Material Density Function by Multiple Sequential Inversions of 2-D Images in Electron Microscopy -- Problems with Constructing Tests to Accept the Null Hypothesis -- Cognitive-Constructivism, Quine, Dogmas of Empiricism, and Munchhausen's Trilemma -- A maximum entropy approach to learn Bayesian networks from incomplete data -- Bayesian Inference in Cumulative Distribution Fields -- MCMC-Driven Adaptive Multiple Importance Sampling -- Bayes Factors for comparison of restricted simple linear regression coefficients -- A Spanning Tree Hierarchical Model for Land Cover Classification -- Nonparametric Bayesian regression under combinations of local shape constraints -- A Bayesian Approach to Predicting Football Match Outcomes Considering Time Effect Weight -- Homogeneity tests for 22 contingency tables -- Combining Optimization and Randomization Approaches for the Design of Clinical Trials -- Factor analysis with mixture modeling to evaluate coherent patterns in microarray data. 
520 |a Through refereed papers, this volume focuses on the foundations of the Bayesian paradigm; their comparison to objectivistic or frequentist Statistics counterparts; and the appropriate application of Bayesian foundations. This research in Bayesian Statistics is applicable to data analysis in biostatistics, clinical trials, law, engineering, and the social sciences. EBEB, the Brazilian Meeting on Bayesian Statistics, is held every two years by the ISBrA, the International Society for Bayesian Analysis, one of the most active chapters of the ISBA. The 12th meeting took place March 10-14, 2014 in Atibaia. Interest in foundations of inductive Statistics has grown recently in accordance with the increasing availability of Bayesian methodological alternatives. Scientists need to deal with the ever more difficult choice of the optimal method to apply to their problem. This volume shows how Bayes can be the answer. The examination and discussion on the foundations work towards the goal of proper application of Bayesian methods by the scientific community. Individual papers range in focus from posterior distributions for non-dominated models, to combining optimization and randomization approaches for the design of clinical trials, and classification of archaeological fragments with Bayesian networks. 
650 0 |a Statistics.  |9 124796 
650 1 4 |a Statistics.  |9 124796 
650 2 4 |a Statistical Theory and Methods.  |9 303276 
650 2 4 |a Statistics for Life Sciences, Medicine, Health Sciences.  |9 265982 
650 2 4 |a Statistics, general.  |9 305490 
700 1 |a Polpo, Adriano.  |e editor.  |9 464374 
700 1 |a Louzada, Francisco.  |e editor.  |9 464375 
700 1 |a Rifo, Laura L. R.  |e editor.  |9 464376 
700 1 |a Stern, Julio M.  |e editor.  |9 464377 
700 1 |a Lauretto, Marcelo.  |e editor.  |9 464378 
710 2 |a SpringerLink (Online service)  |9 143950 
773 0 |t Springer eBooks 
830 0 |a Springer Proceedings in Mathematics & Statistics,  |9 445420 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-12454-4 
856 |y Перейти в каталог НБ ТГУ  |u https://koha.lib.tsu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=413241 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649) 
999 |c 413241  |d 413241