Approximation of Stochastic Invariant Manifolds Stochastic Manifolds for Nonlinear SPDEs I /

This first volume is concerned with the analytic derivation of explicit formulas for the leading-order Taylor approximations of (local) stochastic invariant manifolds associated with a broad class of nonlinear stochastic partial differential equations. These approximations  take the form of Lyapunov...

Full description

Bibliographic Details
Published in:Springer eBooks
Main Authors: Chekroun, Mickaël D. (Author), Liu, Honghu (Author), Wang, Shouhong (Author)
Corporate Author: SpringerLink (Online service)
Format: eBook
Language:English
Published: Cham : Springer International Publishing : Imprint: Springer, 2015.
Series:SpringerBriefs in Mathematics,
Subjects:
Online Access:http://dx.doi.org/10.1007/978-3-319-12496-4
Перейти в каталог НБ ТГУ
LEADER 04111nam a22005775i 4500
001 vtls000558263
003 RU-ToGU
005 20210922085654.0
007 cr nn 008mamaa
008 170212s2015 gw | s |||| 0|eng d
020 |a 9783319124964  |9 978-3-319-12496-4 
024 7 |a 10.1007/978-3-319-12496-4  |2 doi 
035 |a to000558263 
039 9 |y 201702122147  |z Александр Эльверович Гилязов 
040 |a Springer  |c Springer  |d RU-ToGU 
050 4 |a QA313 
072 7 |a PBWR  |2 bicssc 
072 7 |a MAT034000  |2 bisacsh 
082 0 4 |a 515.39  |2 23 
082 0 4 |a 515.48  |2 23 
100 1 |a Chekroun, Mickaël D.  |e author.  |9 464606 
245 1 0 |a Approximation of Stochastic Invariant Manifolds  |h electronic resource  |b Stochastic Manifolds for Nonlinear SPDEs I /  |c by Mickaël D. Chekroun, Honghu Liu, Shouhong Wang. 
260 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2015.  |9 742221 
300 |a XV, 127 p. 1 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a SpringerBriefs in Mathematics,  |x 2191-8198 
505 0 |a General Introduction -- Stochastic Invariant Manifolds: Background and Main Contributions -- Preliminaries -- Stochastic Evolution Equations -- Random Dynamical Systems -- Cohomologous Cocycles and Random Evolution Equations -- Linearized Stochastic Flow and Related Estimates -- Existence and Attraction Properties of Global Stochastic Invariant Manifolds -- Existence and Smoothness of Global Stochastic Invariant Manifolds -- Asymptotic Completeness of Stochastic Invariant Manifolds -- Local Stochastic Invariant Manifolds: Preparation to Critical Manifolds -- Local Stochastic Critical Manifolds: Existence and Approximation Formulas -- Standing Hypotheses -- Existence of Local Stochastic Critical Manifolds -- Approximation of Local Stochastic Critical Manifolds -- Proofs of Theorem 6.1 and Corollary 6.1 -- Approximation of Stochastic Hyperbolic Invariant Manifolds -- A Classical and Mild Solutions of the Transformed RPDE -- B Proof of Theorem 4.1 -- References. 
520 |a This first volume is concerned with the analytic derivation of explicit formulas for the leading-order Taylor approximations of (local) stochastic invariant manifolds associated with a broad class of nonlinear stochastic partial differential equations. These approximations  take the form of Lyapunov-Perron integrals, which are further characterized in Volume II as pullback limits associated with some partially coupled backward-forward systems. This pullback characterization provides a useful interpretation of the corresponding approximating manifolds and leads to a simple framework that unifies some other approximation approaches in the literature. A self-contained survey is also included on the existence and attraction of one-parameter families of stochastic invariant manifolds, from the point of view of the theory of random dynamical systems. 
650 0 |a mathematics.  |9 566183 
650 0 |a Dynamics.  |9 460472 
650 0 |a Ergodic theory.  |9 461180 
650 0 |a Differential Equations.  |9 303496 
650 0 |a Partial Differential Equations.  |9 303602 
650 0 |a Probabilities.  |9 295556 
650 1 4 |a Mathematics.  |9 566184 
650 2 4 |a Dynamical Systems and Ergodic Theory.  |9 303500 
650 2 4 |a Partial Differential Equations.  |9 303602 
650 2 4 |a Probability Theory and Stochastic Processes.  |9 303734 
650 2 4 |a Ordinary Differential Equations.  |9 303501 
700 1 |a Liu, Honghu.  |e author.  |9 464607 
700 1 |a Wang, Shouhong.  |e author.  |9 446369 
710 2 |a SpringerLink (Online service)  |9 143950 
773 0 |t Springer eBooks 
830 0 |a SpringerBriefs in Mathematics,  |9 445669 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-12496-4 
856 |y Перейти в каталог НБ ТГУ  |u https://koha.lib.tsu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=413380 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649) 
999 |c 413380  |d 413380