Stochastic Parameterizing Manifolds and Non-Markovian Reduced Equations Stochastic Manifolds for Nonlinear SPDEs II /

In this second volume, a general approach is developed to provide approximate parameterizations of the "small" scales by the "large" ones for a broad class of stochastic partial differential equations (SPDEs). This is accomplished via the concept of parameterizing manifolds (PMs)...

Full description

Bibliographic Details
Published in:Springer eBooks
Main Authors: Chekroun, Mickaël D. (Author), Liu, Honghu (Author), Wang, Shouhong (Author)
Corporate Author: SpringerLink (Online service)
Format: eBook
Language:English
Published: Cham : Springer International Publishing : Imprint: Springer, 2015.
Series:SpringerBriefs in Mathematics,
Subjects:
Online Access:http://dx.doi.org/10.1007/978-3-319-12520-6
Перейти в каталог НБ ТГУ
LEADER 03583nam a22005655i 4500
001 vtls000558270
003 RU-ToGU
005 20210922085708.0
007 cr nn 008mamaa
008 170212s2015 gw | s |||| 0|eng d
020 |a 9783319125206  |9 978-3-319-12520-6 
024 7 |a 10.1007/978-3-319-12520-6  |2 doi 
035 |a to000558270 
039 9 |y 201702122147  |z Александр Эльверович Гилязов 
040 |a Springer  |c Springer  |d RU-ToGU 
050 4 |a QA370-380 
072 7 |a PBKJ  |2 bicssc 
072 7 |a MAT007000  |2 bisacsh 
082 0 4 |a 515.353  |2 23 
100 1 |a Chekroun, Mickaël D.  |e author.  |9 464606 
245 1 0 |a Stochastic Parameterizing Manifolds and Non-Markovian Reduced Equations  |h electronic resource  |b Stochastic Manifolds for Nonlinear SPDEs II /  |c by Mickaël D. Chekroun, Honghu Liu, Shouhong Wang. 
260 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2015.  |9 742221 
300 |a XVII, 129 p. 12 illus., 11 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a SpringerBriefs in Mathematics,  |x 2191-8198 
505 0 |a General Introduction -- Preliminaries -- Invariant Manifolds -- Pullback Characterization of Approximating, and Parameterizing Manifolds -- Non-Markovian Stochastic Reduced Equations -- On-Markovian Stochastic Reduced Equations on the Fly -- Proof of Lemma 5.1.-References -- Index. 
520 |a In this second volume, a general approach is developed to provide approximate parameterizations of the "small" scales by the "large" ones for a broad class of stochastic partial differential equations (SPDEs). This is accomplished via the concept of parameterizing manifolds (PMs), which are stochastic manifolds that improve, for a given realization of the noise, in mean square error the partial knowledge of the full SPDE solution when compared to its projection onto some resolved modes. Backward-forward systems are designed to give access to such PMs in practice. The key idea consists of representing the modes with high wave numbers as a pullback limit depending on the time-history of the modes with low wave numbers. Non-Markovian stochastic reduced systems are then derived based on such a PM approach. The reduced systems take the form of stochastic differential equations involving random coefficients that convey memory effects. The theory is illustrated on a stochastic Burgers-type equation. 
650 0 |a mathematics.  |9 566183 
650 0 |a Dynamics.  |9 460472 
650 0 |a Ergodic theory.  |9 461180 
650 0 |a Differential Equations.  |9 303496 
650 0 |a Partial Differential Equations.  |9 303602 
650 0 |a Probabilities.  |9 295556 
650 1 4 |a Mathematics.  |9 566184 
650 2 4 |a Partial Differential Equations.  |9 303602 
650 2 4 |a Dynamical Systems and Ergodic Theory.  |9 303500 
650 2 4 |a Probability Theory and Stochastic Processes.  |9 303734 
650 2 4 |a Ordinary Differential Equations.  |9 303501 
700 1 |a Liu, Honghu.  |e author.  |9 464607 
700 1 |a Wang, Shouhong.  |e author.  |9 446369 
710 2 |a SpringerLink (Online service)  |9 143950 
773 0 |t Springer eBooks 
830 0 |a SpringerBriefs in Mathematics,  |9 445669 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-12520-6 
856 |y Перейти в каталог НБ ТГУ  |u https://koha.lib.tsu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=413461 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649) 
999 |c 413461  |d 413461