Language Identification Using Spectral and Prosodic Features

This book discusses the impact of spectral features extracted from frame level, glottal closure regions, and pitch-synchronous analysis on the performance of language identification systems. In addition to spectral features, the authors explore prosodic features such as intonation, rhythm, and stres...

Full description

Bibliographic Details
Published in:Springer eBooks
Main Authors: Rao, K. Sreenivasa (Author), Reddy, V. Ramu (Author), Maity, Sudhamay (Author)
Corporate Author: SpringerLink (Online service)
Format: eBook
Language:English
Published: Cham : Springer International Publishing : Imprint: Springer, 2015.
Series:SpringerBriefs in Electrical and Computer Engineering,
Subjects:
Online Access:http://dx.doi.org/10.1007/978-3-319-17163-0
Перейти в каталог НБ ТГУ
LEADER 03488nam a22005535i 4500
001 vtls000559483
003 RU-ToGU
005 20210922085820.0
007 cr nn 008mamaa
008 170212s2015 gw | s |||| 0|eng d
020 |a 9783319171630  |9 978-3-319-17163-0 
024 7 |a 10.1007/978-3-319-17163-0  |2 doi 
035 |a to000559483 
039 9 |y 201702122238  |z Александр Эльверович Гилязов 
040 |a Springer  |c Springer  |d RU-ToGU 
050 4 |a TK5102.9 
050 4 |a TA1637-1638 
050 4 |a TK7882.S65 
072 7 |a TTBM  |2 bicssc 
072 7 |a UYS  |2 bicssc 
072 7 |a TEC008000  |2 bisacsh 
072 7 |a COM073000  |2 bisacsh 
082 0 4 |a 621.382  |2 23 
100 1 |a Rao, K. Sreenivasa.  |e author.  |9 448928 
245 1 0 |a Language Identification Using Spectral and Prosodic Features  |h electronic resource  |c by K. Sreenivasa Rao, V. Ramu Reddy, Sudhamay Maity. 
260 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2015.  |9 742221 
300 |a XI, 98 p. 21 illus., 5 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a SpringerBriefs in Electrical and Computer Engineering,  |x 2191-8112 
505 0 |a  Introduction.- Literature Review -- Language Identification using Spectral Features -- Language Identification using Prosodic Features -- Summary and Conclusions -- Appendix A: LPCC Features -- Appendix B: MFCC Features --  Appendix C: Gaussian Mixture Model (GMM). 
520 |a This book discusses the impact of spectral features extracted from frame level, glottal closure regions, and pitch-synchronous analysis on the performance of language identification systems. In addition to spectral features, the authors explore prosodic features such as intonation, rhythm, and stress features for discriminating the languages. They present how the proposed spectral and prosodic features capture the language specific information from two complementary aspects, showing how the development of language identification (LID) system using the combination of spectral and prosodic features will enhance the accuracy of identification as well as improve the robustness of the system. This book provides the methods to extract the spectral and prosodic features at various levels, and also suggests the appropriate models for developing robust LID systems according to specific spectral and prosodic features. Finally, the book discuss about various combinations of spectral and prosodic features, and the desired models to enhance the performance of LID systems. 
650 0 |a engineering.  |9 224332 
650 0 |a Computational linguistics.  |9 309798 
650 1 4 |a Engineering.  |9 224332 
650 2 4 |a Signal, Image and Speech Processing.  |9 274103 
650 2 4 |a Language Translation and Linguistics.  |9 304148 
650 2 4 |a Computational Linguistics.  |9 309798 
700 1 |a Reddy, V. Ramu.  |e author.  |9 465377 
700 1 |a Maity, Sudhamay.  |e author.  |9 465378 
710 2 |a SpringerLink (Online service)  |9 143950 
773 0 |t Springer eBooks 
830 0 |a SpringerBriefs in Electrical and Computer Engineering,  |9 410832 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-17163-0 
856 |y Перейти в каталог НБ ТГУ  |u https://koha.lib.tsu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=413852 
912 |a ZDB-2-ENG 
950 |a Engineering (Springer-11647) 
999 |c 413852  |d 413852