Geometric Continuum Mechanics and Induced Beam Theories

This research monograph discusses novel approaches to geometric continuum mechanics and introduces beams as constraint continuous bodies. In the coordinate free and metric independent geometric formulation of continuum mechanics as well as for beam theories, the principle of virtual work serves as t...

Full description

Bibliographic Details
Published in:Springer eBooks
Main Author: R. Eugster, Simon (Author)
Corporate Author: SpringerLink (Online service)
Format: eBook
Language:English
Published: Cham : Springer International Publishing : Imprint: Springer, 2015.
Series:Lecture Notes in Applied and Computational Mechanics,
Subjects:
Online Access:http://dx.doi.org/10.1007/978-3-319-16495-3
Перейти в каталог НБ ТГУ
LEADER 03122nam a22005295i 4500
001 vtls000559301
003 RU-ToGU
005 20210922085859.0
007 cr nn 008mamaa
008 170212s2015 gw | s |||| 0|eng d
020 |a 9783319164953  |9 978-3-319-16495-3 
024 7 |a 10.1007/978-3-319-16495-3  |2 doi 
035 |a to000559301 
039 9 |y 201702122229  |z Александр Эльверович Гилязов 
040 |a Springer  |c Springer  |d RU-ToGU 
050 4 |a TA405-409.3 
050 4 |a QA808.2 
072 7 |a TG  |2 bicssc 
072 7 |a TEC009070  |2 bisacsh 
072 7 |a TEC021000  |2 bisacsh 
082 0 4 |a 620.1  |2 23 
100 1 |a R. Eugster, Simon.  |e author.  |9 465694 
245 1 0 |a Geometric Continuum Mechanics and Induced Beam Theories  |h electronic resource  |c by Simon R. Eugster. 
260 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2015.  |9 742221 
300 |a IX, 146 p. 12 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Lecture Notes in Applied and Computational Mechanics,  |x 1613-7736 ;  |v 75 
505 0 |a Introduction -- Part I Geometric Continuum Mechanics -- Part II Induced Beam Theories. 
520 |a This research monograph discusses novel approaches to geometric continuum mechanics and introduces beams as constraint continuous bodies. In the coordinate free and metric independent geometric formulation of continuum mechanics as well as for beam theories, the principle of virtual work serves as the fundamental principle of mechanics. Based on the perception of analytical mechanics that forces of a mechanical system are defined as dual quantities to the kinematical description, the virtual work approach is a systematic way to treat arbitrary mechanical systems. Whereas this methodology is very convenient to formulate induced beam theories, it is essential in geometric continuum mechanics when the assumptions on the physical space are relaxed and the space is modeled as a smooth manifold. The book addresses researcher and graduate students in engineering and mathematics interested in recent developments of a geometric formulation of continuum mechanics and a hierarchical development of induced beam theories. 
650 0 |a engineering.  |9 224332 
650 0 |a Continuum physics.  |9 463344 
650 0 |a Continuum mechanics.  |9 567474 
650 0 |a Structural Mechanics.  |9 304375 
650 1 4 |a Engineering.  |9 224332 
650 2 4 |a Continuum Mechanics and Mechanics of Materials.  |9 303579 
650 2 4 |a Classical Continuum Physics.  |9 410669 
650 2 4 |a Structural Mechanics.  |9 304375 
710 2 |a SpringerLink (Online service)  |9 143950 
773 0 |t Springer eBooks 
830 0 |a Lecture Notes in Applied and Computational Mechanics,  |9 316161 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-16495-3 
856 |y Перейти в каталог НБ ТГУ  |u https://koha.lib.tsu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=414072 
912 |a ZDB-2-ENG 
950 |a Engineering (Springer-11647) 
999 |c 414072  |d 414072