Artificial Intelligent Approaches in Petroleum Geosciences

This book presents several intelligent approaches for tackling and solving challenging practical problems facing those in the petroleum geosciences and petroleum industry. Written by experienced academics, this book offers state-of-the-art working examples and provides the reader with exposure to th...

Full description

Bibliographic Details
Published in:Springer eBooks
Corporate Author: SpringerLink (Online service)
Other Authors: Cranganu, Constantin (Editor), Luchian, Henri (Editor), Breaban, Mihaela Elena (Editor)
Format: eBook
Language:English
Published: Cham : Springer International Publishing : Imprint: Springer, 2015.
Subjects:
Online Access:http://dx.doi.org/10.1007/978-3-319-16531-8
Перейти в каталог НБ ТГУ
LEADER 05047nam a22005655i 4500
001 vtls000559310
003 RU-ToGU
005 20210922085918.0
007 cr nn 008mamaa
008 170212s2015 gw | s |||| 0|eng d
020 |a 9783319165318  |9 978-3-319-16531-8 
024 7 |a 10.1007/978-3-319-16531-8  |2 doi 
035 |a to000559310 
039 9 |y 201702122230  |z Александр Эльверович Гилязов 
040 |a Springer  |c Springer  |d RU-ToGU 
050 4 |a TJ163.13-163.25 
050 4 |a TP315-360 
072 7 |a THF  |2 bicssc 
072 7 |a TEC031030  |2 bisacsh 
082 0 4 |a 662.6  |2 23 
245 1 0 |a Artificial Intelligent Approaches in Petroleum Geosciences  |h electronic resource  |c edited by Constantin Cranganu, Henri Luchian, Mihaela Elena Breaban. 
260 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2015.  |9 742221 
300 |a XII, 290 p. 126 illus., 81 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
505 0 |a Intelligent Data Analysis Techniques - Machine Learning and Data Mining -- On meta-heuristics in optimization and data analysis. Application to geosciences -- Genetic Programming Techniques with Applications in the Oil and Gas Industry -- Application of Artificial Neural Networks in Geoscience and Petroleum Industry -- On Support Vector Regression to Predict Poisson's Ratio and Young's Modulus of Reservoir Rock -- Use of Active Learning Method to determine the presence and estimate the magnitude of abnormally pressured fluid zones: A case study from the Anadarko Basin, Oklahoma -- Active Learning Method for estimating missing logs in hydrocarbon reservoirs -- Improving the accuracy of Active Learning Method via noise injection for estimating hydraulic flow units: An example from a heterogeneous carbonate reservoir -- Well log analysis by global optimization-based interval inversion method -- Permeability estimation in petroleum reservoir by artificial intelligent methods: An overview. 
520 |a This book presents several intelligent approaches for tackling and solving challenging practical problems facing those in the petroleum geosciences and petroleum industry. Written by experienced academics, this book offers state-of-the-art working examples and provides the reader with exposure to the latest developments in the field of intelligent methods applied to oil and gas research, exploration and production. It also analyzes the strengths and weaknesses of each method presented using benchmarking, whilst also emphasizing essential parameters such as robustness, accuracy, speed of convergence, computer time, overlearning and the role of normalization. The intelligent approaches presented include artificial neural networks, fuzzy logic, active learning method, genetic algorithms and support vector machines, amongst others. Integration, handling data of immense size and uncertainty, and dealing with risk management are among crucial issues in petroleum geosciences. The problems we have to solve in this domain are becoming too complex to rely on a single discipline for effective solutions, and the costs associated with poor predictions (e.g. dry holes) increase. Therefore, there is a need to establish a new approach aimed at proper integration of disciplines (such as petroleum engineering, geology, geophysics, and geochemistry), data fusion, risk reduction, and uncertainty management. These intelligent techniques can be used for uncertainty analysis, risk assessment, data fusion and mining, data analysis and interpretation, and knowledge discovery, from diverse data such as 3-D seismic, geological data, well logging, and production data. This book is intended for petroleum scientists, data miners, data scientists and professionals and post-graduate students involved in petroleum industry. 
650 0 |a Energy.  |9 412284 
650 0 |a Fossil fuels.  |9 461478 
650 0 |a Mineral Resources.  |9 309278 
650 0 |a Geotechnical Engineering.  |9 305103 
650 0 |a Artificial intelligence.  |9 274099 
650 0 |a Mathematical models.  |9 460208 
650 1 4 |a Energy.  |9 412284 
650 2 4 |a Fossil Fuels (incl. Carbon Capture).  |9 411494 
650 2 4 |a Artificial Intelligence (incl. Robotics).  |9 274102 
650 2 4 |a Geotechnical Engineering & Applied Earth Sciences.  |9 294363 
650 2 4 |a Mathematical Modeling and Industrial Mathematics.  |9 303944 
650 2 4 |a Mineral Resources.  |9 309278 
700 1 |a Cranganu, Constantin.  |e editor.  |9 465873 
700 1 |a Luchian, Henri.  |e editor.  |9 465874 
700 1 |a Breaban, Mihaela Elena.  |e editor.  |9 465875 
710 2 |a SpringerLink (Online service)  |9 143950 
773 0 |t Springer eBooks 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-16531-8 
856 |y Перейти в каталог НБ ТГУ  |u https://koha.lib.tsu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=414168 
912 |a ZDB-2-ENE 
950 |a Energy (Springer-40367) 
999 |c 414168  |d 414168