Optimal Boundary Control and Boundary Stabilization of Hyperbolic Systems

This brief considers recent results on optimal control and stabilization of systems governed by hyperbolic partial differential equations, specifically those in which the control action takes place at the boundary.  The wave equation is used as a typical example of a linear system, through which the...

Full description

Bibliographic Details
Published in:Springer eBooks
Main Author: Gugat, Martin (Author)
Corporate Author: SpringerLink (Online service)
Format: eBook
Language:English
Published: Cham : Springer International Publishing : Imprint: Birkhäuser, 2015.
Series:SpringerBriefs in Electrical and Computer Engineering,
Subjects:
Online Access:http://dx.doi.org/10.1007/978-3-319-18890-4
Перейти в каталог НБ ТГУ
LEADER 03399nam a22005775i 4500
001 vtls000559944
003 RU-ToGU
005 20210922085951.0
007 cr nn 008mamaa
008 170212s2015 gw | s |||| 0|eng d
020 |a 9783319188904  |9 978-3-319-18890-4 
024 7 |a 10.1007/978-3-319-18890-4  |2 doi 
035 |a to000559944 
039 9 |y 201702122302  |z Александр Эльверович Гилязов 
040 |a Springer  |c Springer  |d RU-ToGU 
050 4 |a Q295 
050 4 |a QA402.3-402.37 
072 7 |a GPFC  |2 bicssc 
072 7 |a SCI064000  |2 bisacsh 
072 7 |a TEC004000  |2 bisacsh 
082 0 4 |a 519  |2 23 
100 1 |a Gugat, Martin.  |e author.  |9 466159 
245 1 0 |a Optimal Boundary Control and Boundary Stabilization of Hyperbolic Systems  |h electronic resource  |c by Martin Gugat. 
260 |a Cham :  |b Springer International Publishing :  |b Imprint: Birkhäuser,  |c 2015.  |9 745056 
300 |a VIII, 140 p. 3 illus., 2 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a SpringerBriefs in Electrical and Computer Engineering,  |x 2191-8112 
505 0 |a Introduction -- Systems that are Governed by the Wave Equation -- Exact Controllability -- Optimal Exact Control -- Boundary Stabilization -- Nonlinear Systems -- Distributions -- Index. 
520 |a This brief considers recent results on optimal control and stabilization of systems governed by hyperbolic partial differential equations, specifically those in which the control action takes place at the boundary.  The wave equation is used as a typical example of a linear system, through which the author explores initial boundary value problems, concepts of exact controllability, optimal exact control, and boundary stabilization.  Nonlinear systems are also covered, with the Korteweg-de Vries and Burgers Equations serving as standard examples.  To keep the presentation as accessible as possible, the author uses the case of a system with a state that is defined on a finite space interval, so that there are only two boundary points where the system can be controlled.  Graduate and post-graduate students as well as researchers in the field will find this to be an accessible introduction to problems of optimal control and stabilization. 
650 0 |a mathematics.  |9 566183 
650 0 |a Partial Differential Equations.  |9 303602 
650 0 |a System theory.  |9 460201 
650 0 |a Calculus of variations.  |9 421215 
650 0 |a Mathematical optimization.  |9 566241 
650 0 |a Control Engineering.  |9 304706 
650 1 4 |a Mathematics.  |9 566184 
650 2 4 |a Systems Theory, Control.  |9 304010 
650 2 4 |a Partial Differential Equations.  |9 303602 
650 2 4 |a Calculus of Variations and Optimal Control; Optimization.  |9 306640 
650 2 4 |a control.  |9 348605 
650 2 4 |a Continuous Optimization.  |9 446367 
710 2 |a SpringerLink (Online service)  |9 143950 
773 0 |t Springer eBooks 
830 0 |a SpringerBriefs in Electrical and Computer Engineering,  |9 410832 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-18890-4 
856 |y Перейти в каталог НБ ТГУ  |u https://koha.lib.tsu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=414361 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649) 
999 |c 414361  |d 414361